首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
C6H5SO2 radicals were produced upon irradiation of three flowing mixtures: C6H5SO2Cl in N2, C6H5Cl and SO2 in CO2, and C6H5Br and SO2 in CO2, with a KrF excimer laser at 248 nm. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record the time-resolved infrared (IR) absorption spectra of reaction intermediates. Two transient bands with origins at 1087.7 and 1278.2 cm-1 are assigned to the SO2-symmetric and SO2-antisymmetric stretching modes, respectively, of C6H5SO2. Calculations with density-functional theory (B3LYP/aug-cc-pVTZ and B3P86/aug-cc-pVTZ) predict the geometry and vibrational wave numbers of C6H5SO2 and C6H5OSO. The vibrational wave numbers and IR intensities of C6H5SO2 agree satisfactorily with the observed new features. Rotational contours of IR spectra of C6H5SO2 simulated based on predicted molecular parameters agree satisfactorily with experimental results for both bands. The SO2-symmetric stretching band is dominated by a- and c-type rotational structures and the SO2-antisymmetric stretching band is dominated by a b-type rotational structure. When C6H5SO2Cl was used as a precursor of C6H5SO2, C6H5SO2Cl was slowly reproduced at the expense of C6H5SO2, indicating that the reaction Cl+C6H5SO2 takes place. When C6H5Br/SO2/CO2 was used as a precursor of C6H5SO2, features at 1186 and 1396 cm-1 ascribable to C6H5SO2Br were observed at a later period due to secondary reaction of C6H5SO2 with Br. Corresponding kinetics based on temporal profiles of observed IR absorption are discussed.  相似文献   

2.
Competitive bond dissociation mechanisms for bromoacetyl chloride and 2‐ and 3‐bromopropionyl chloride following the 1[n(O)→π*(C?O)] transition at 234–235 nm are investigated. Branching ratios for C? Br/C? Cl bond fission are found by using the (2+1) resonance‐enhanced multiphoton ionization (REMPI) technique coupled with velocity ion imaging. The fragment branching ratios depend mainly on the dissociation pathways and the distances between the orbitals of Br and the C?O chromophore. C? Cl bond fission is anticipated to follow an adiabatic potential surface for a strong diabatic coupling between the n(O)π*(C?O) and np(Cl)σ*(C? Cl) bands. In contrast, C? Br bond fission is subject to much weaker coupling between n(O)π*(C?O) and np(Br)σ*(C? Br). Thus, a diabatic pathway is preferred for bromoacetyl chloride and 2‐bromopropionyl chloride, which leads to excited‐state products. For 3‐bromopropionyl chloride, the available energy is not high enough to reach the excited‐state products such that C? Br bond fission must proceed through an adiabatic pathway with severe suppression by nonadiabatic coupling. The fragment translational energies and anisotropy parameters for the three molecules are also analyzed and appropriately interpreted.  相似文献   

3.
We study the vibrational properties of the protonated water dimer and its deuterated forms at room temperature. Molecular dynamics simulations within the empirical valence bond (EVB) model are used to generate the vibrational spectra that are interpreted using the effective modes analysis (EMA). Quantum effects are taken into account through an effective parametrization of the EVB model. EMA allows for the assignment of the bands in the 1000 - 2000?cm(-1) region of the protonated water dimer from the molecular dynamics trajectory. It is then found that although this system is very anharmonic the two main bands in this spectral region arise from a linear coupling between the asymmetric OH(+)O stretch and asymmetric bend of the two water molecules. This mixing explains the simulated band shifts upon isotopic substitution of the central proton or of the hydrogens of the two water molecules.  相似文献   

4.
The vibrational spectral studies of the semi-organic material l- arginine acetate (LAA) are carried out with the help of density functional calculations to derive the equilibrium geometry as well as the vibrational wavenumbers and intensities of the spectral bands. The vibrational spectrum assignments are performed using normal coordinate analysis (NCA) in accordance with the scaled quantum mechanical force field approach (SQMFF). Vibrational spectra confirm the COO- modes split due to intra- and intermolecular association based on C–O….H, N–H….O, and O–H?O hydrogen bonding in the molecule, which lowers carboxylate wavenumbers. The natural bond orbital (NBO) analysis and DFT computations also confirm the occurrence of strong intra and intermolecular N–H?O and O–H?O ionic hydrogen bonding between charged species, providing the non-centrosymmetric structure in the LAA crystal.  相似文献   

5.
The vibrational dynamics of isolated water molecules dissolved in the nonpolar organic liquids 1,2-dichloroethane (C(2)H(4)Cl(2)) and d-chloroform (CDCl(3)) have been studied using an IR pump-probe experiment with approximately 2 ps time resolution. Analyzing transient, time, and spectrally resolved data in both the OH bending and the OH stretching region, the anharmonic constants of the bending overtone (v=2) and the bend-stretch combination modes were obtained. Based on this knowledge, the relaxation pathways of single water molecules were disentangled comprehensively, proving that the vibrational energy of H(2)O molecules is relaxing following the scheme OH stretch-->OH bend overtone-->OH bend-->ground state. A lifetime of 4.8+/-0.4 ps is determined for the OH bending mode of H(2)O in 1,2-dichloroethane. For H(2)O in CDCl(3) a numerical analysis based on rate equations suggests a bending overtone lifetime of tau(020)=13+/-5 ps. The work also shows that full 2-dimensional (pump-probe) spectral resolution with access to all vibrational modes of a molecule is required for the comprehensive analysis of vibrational energy relaxation in liquids.  相似文献   

6.
采用含时量子波包理论的简单模型对5-氯尿嘧啶和尿嘧啶的共振拉曼光谱开展了强度分析拟合, 获得了1(π, π*)激发态的几何结构变化动态特征. 结果表明, 尿嘧啶1S0→1S2跃迁的动态结构特征因5-位氯原子取代而改变. 5-氯尿嘧啶的动态结构特征主要沿C5=C6伸缩振动+C6H12 弯曲振动和N3H9/N1H7弯曲振动+N1C6伸缩振动反应坐标展开, 而尿嘧啶的动态结构特征主要沿嘧啶环的伸缩振动+C5H11/C6H12/N1H7弯曲振动和C4=O10伸缩振动反应坐标展开. π和π*轨道中氯原子的pz电子参与嘧啶环的p-π共轭作用导致了在1(π, π*)激发态上5-氯尿嘧啶的振动重组能更多地配分给嘧啶环的弯曲振动模式和C5=C6伸缩振动模式. 尿嘧啶在甲醇中的激发态动态结构特征与在水中的基本一致, 但波包沿C5H11/C6H12/N1H7弯曲振动+N1C6伸缩振动(υ12)和环呼吸振动(υ17)反应坐标的运动明显增强.  相似文献   

7.
A structural analysis for dibutoxyphosphoryl benzylisothiourea (DBBT) was carried out by mass spectrometry, 1H NMR, 13C NMR, infrared and Raman spectroscopy. The Fourier transform infrared and Fourier transform Raman spectra of liquid of DBBT were carried out with the purpose of studying the tautomerism (structures I and II) and the behavior of the more polar absorption's bands in different solvents, i.e., absorption's of the P=O and C=N bands. The results suggest the existence of tautomerism in the pure (liquid) compound and in solution of CHCl(3), CH(2)Cl(2), CHBr(3), and THF, C(2)H(4)Cl(2) and C(2)H(4)Br(2). The solvent interaction with the P=O band was characterized by the presence of a new band in the region of the O-H absorption. A vibrational assignment of the IR bands and Raman shifts was done and is proposed in this paper.  相似文献   

8.
林墀昌  陈功 《化学学报》1988,46(5):439-444
本文报道MoCl3.3H2O与乙酸作用生成三核钼簇合物H[H2O]3[Mo3O(OAc)3Cl6]的反应, 并用X射线单晶结构分析方法测定了簇合物的晶体结构, 结晶学参数. 结构分析结果表明该化合物阴离子为单氧帽等边三角形三核钼簇合阴离子, Mo-Mo平均距离2.569埃.对簇骼单元[Mo3O(μ-Cl)3Cl3]^2^+进行简正坐标分析. 从理论上对振动光谱谱带进行了归属. 10条IR谱带的观测和计算频率的平均偏差为1.15%. 本文讨论了特征谱带(包括金属键)的归属和力常数的合理性.  相似文献   

9.
The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (5(12)CH(4)) and tetrakaidecahedron (5(12)6(2)CH(4)) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH(4) in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH(4) and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 5(12)CH(4) cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH(4) molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 5(12)CH(4) and 5(12)6(2)CH(4) cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH(4) molecules. The CH(4) bending modes in the 5(12)CH(4) and 5(12)6(2)CH(4) cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH(4). The low frequency librational modes which are collective motion of the water molecules and CH(4) in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.  相似文献   

10.
The results of anharmonic frequency calculations on neutral imidazole (C3N2H4, Im), protonated imidazole (ImH+), and its complexes with water (ImH+)(H2O)n, are presented and compared to gas phase infrared photodissociation spectroscopy (IRPD) data. Anharmonic frequencies are obtained via ab initio vibrational self-consistent field (VSCF) calculations taking into account pairwise interactions between the normal modes. The key results are: (1) Prediction of anharmonic vibrational frequencies on an MP2 ab initio potential energy surface show excellent agreement with experiment and outstanding improvement over the harmonic frequencies. For example, the ab initio calculated anharmonic frequency for (ImH+)(H2O)N2 exhibits an overall average percentage error of 0.6% from experiment. (2) Anharmonic vibrational frequencies calculated on a semiempirical potential energy surface fitted to ab initio harmonic data represents spectroscopy well, particularly for water complexes. As an example, anharmonic frequencies for (ImH+)H2O and (ImH+)(H2O)2 show an overall average deviation of 1.02% and 1.05% from experiment, respectively. This agreement between theory and experiment also supports the validity and use of the pairwise approximation used in the calculations. (3) Anharmonic coupling due to hydration effects is found to significantly reduce the vibrational frequencies for the NH stretch modes. The frequency of the NH stretch is observed to increase with the removal of a water molecule or replacement of water with N2. This result also indicates the ability of the VSCF method to predict accurate frequencies in a matrix environment. The calculation provides insights into the nature of anharmonic effects in the potential surface. Analysis of percentage anharmoncity in neutral Im and ImH+ shows a higher percentage anharmonicity in the NH and CH stretch modes of neutral Im. Also, we observe that anharmonicity in the NH stretch modes of ImH+ have some contribution from coupling effects, while that of neutral Im has no contribution whatsoever from mode-mode coupling. It is concluded that the incorporation of anharmonic effects in the calculation brings theory and experiment into much closer agreement for these systems.  相似文献   

11.
张秀  吴东  唐碧峰 《物理化学学报》2012,28(5):1045-1053
利用离子速度影像技术研究了CH2BrCl在265nm附近的激光光解.利用2+1共振增强多光子电离分别获得光解产物Br(2P1/2)和Br(2P3/2)的离子速度图像,从而得出Br(2P1/2)和Br(2P3/2)的速度分布,以及光解碎片的总平动能分布.据此,运用角动量守恒碰撞模型获得了解离氯甲基自由基(·CH2Cl)的振动内能分布.研究结果表明:CH2BrCl+hv→Br(2P1/2)+CH2Cl通道产生的氯甲基自由基中被激发的振动模主要是v4、v3+v4、v2+v4和v2+v6;CH2BrCl+hv→Br(2P3/2)+CH2Cl通道产生的氯甲基自由基中被激发的振动模主要是v2+v6、v1+v3、v2+v5、v2+v3+v5和v1+v5;母体分子CH2BrCl在吸收光解光子后除有v5(CBrstretch)振动模被激发外,还有v7(CH2a-stretch)等其它振动模也被激发.  相似文献   

12.
The molecular organization inside myelin figures of various surfactants are studied by laser scanning coherent anti-Stokes Raman scattering (CARS) microscopy that permits three-dimension vibrational imaging. The resonant CARS signals from CH2 and H2O stretch vibrations are used to probe the surfactant and water molecules inside the myelin figures formed of C12E3, lecithin, and Aerosol OT. The polarization sensitivity of CARS is used to analyze the orientation of the CH2 groups and the H2O molecules. The CARS images suggest that the myelin figure is a concentric lamellar structure with alternating surfactant bilayers and partially ordered water layers. No sizable water core is observed in the CARS images at the lateral resolution of 0.3 microm and the axial resolution of 0.75 microm. The CARS data are verified by confocal fluorescence microscopy with FITC and DOPE-rhodamine labeling the water and bilayers, respectively. The relationship between the molecular composition and ordering inside the myelin figures and the surfactant structure has been investigated.  相似文献   

13.
The initial application is reported of single-crystal 55Mn NMR spectroscopy, and associated orientation dependence studies, to single-molecule magnets (SMMs). The studies were performed on two members of the Mn12 family of SMMs, [Mn12O12(O2CMe)16(H2O)4].2MeCO2H.4H2O (Mn12-Ac) and [Mn12O12(O2CCH2Br)16(H2O)4].4CH)Cl) (Mn12-BrAc). Single-crystal spectra give a dramatic improvement in the spectral resolution over oriented powder spectra, allowing the clear observation of quadrupolar splittings, the determination of quadrupole coupling parameters (e2qQ), and an assessment of the symmetry-lowering perturbation of the core of Mn12-Ac by hydrogen-bonding interactions with lattice solvate molecules of crystallization. The results emphasize the utility of single-crystal NMR studies to probe the cores of these magnetic molecules.  相似文献   

14.
The authors have studied the reorientational dynamics of isolated water molecules in a solution of N,N-dimethylacetamide (DMA). From linear spectra, the authors find that the water in this solution forms double hydrogen bond connections to the DMA molecules, resulting in the formation of DMA-water-DMA complexes. The authors use polarization-resolved mid-infrared pump-probe spectroscopy on the water in these complexes to measure the depolarization of three distinct transition dipole moments, each with a different directionality relative to the molecular frame (OH stretch in HDO, symmetric and asymmetric stretch normal modes in H(2)O). By combining these measurements, the authors find that the system exhibits bimodal rotational dynamics with two distinct time scales: a slow (7+/-1 ps) reorientation of the entire DMA-water complex and a fast (0.5+/-0.2 ps) "hinging" motion of the water molecule around the axis parallel to the connecting hydrogen bonds. Additionally, the authors observe an exchange of energy between the two normal modes of H(2)O at a time scale of 0.8+/-0.1 ps and find that the vibrational excitation decays through the symmetric stretch normal mode with a time constant of 0.8+/-0.2 ps.  相似文献   

15.
An ab initio study of the interactions between H2O and Cl2+ and H2O and Br2+ has been performed. We present calculations using both the UMP2 level and the UCCSD(T) level of correlation with the aug-cc-pVTZ basis. The aug-cc-pVQZ basis was tested for selected geometries and was found to yield results similar to the smaller basis. For the H2O-Cl2+ cation, a C2v structure has been identified as the minimum, with De = 6500 cm-1 (78 kJ/mol). A low-lying excited state has De = 6000 cm-1 (72 kJ/mol). The adiabatic and vertical ionization energies of the complex are 10.7 and 11.0 eV, compared to the experimental adiabatic value, 11.5 eV, for free chlorine. For the H2O-Br2+ cation, the calculations are more subtle due to second-order Jahn-Teller effects and result in a Cs structure at the minimum, with De = 6300 cm-1 (75 kJ/mol), yielding an adiabatic ionization energy of 9.9 eV compared to the corresponding experimental value, 10.5 eV, for free bromine. The relatively large binding energies give rise to strong normal mode couplings such that the halogen stretching mode becomes mixed with the water bending and other intermolecular modes, resulting in very large frequency shifts. Vertical ionization energies and ion vibrational frequencies also are reported and used to discuss possible experiments to obtain more precise data for each of the complexes.  相似文献   

16.
The structural and dynamical correlations, and the equation of state of crystalline I(2)O(4), I(2)O(5), and I(2)O(6) are investigated by first-principles calculations based on the density functional theory (DFT). The lattice dynamics results reveal distinctive features in the phonon density of states among the three crystals. The frequencies of the stretch modes in I(2)O(4) and I(2)O(5) are clearly separated from those of the other (e.g., bending) modes by a gap, with all stretch modes above the gap. In contrast, the gap in I(2)O(6) separates the highest-frequency stretch modes with other stretch modes, and there is no gap between the stretch and the other modes in I(2)O(6). The motion of iodine atoms is involved in all vibrational modes in I(2)O(5), but only in low-frequency lattice modes in I(2)O(6). In I(2)O(4), iodine atoms are involved in modes with frequency below 700 cm(-1). Van der Waals correction within our DFT calculations is found to reduce the overestimation of the equilibrium volume, with its effect on structure similar to the pressure effect. Namely, both effects significantly decrease the inter-molecular distances, while slightly increasing the bond lengths within the molecules. This causes the frequencies of some vibrational modes to decrease with pressure, resulting in negative "modes Gru?neisen parameters" for those modes. Thermodynamic properties, derived from the equation of state, of crystalline I(2)O(4), I(2)O(5), and I(2)O(6) are discussed within the quasi-harmonic approximation.  相似文献   

17.
Infrared spectra (4000–200 cm−1) are reported for metal halide(II) benzimidazole complexes of the following stoichiometries: M(benz)X2 [M=Cd, Cu; X=Cl, Br; BENZ=benzimidazole], Co(benz)2, and Co(benz)2X2 [X=Cl, Br, I]. Vibrational assignments are given for all the observed bands. The analysis of the vibrational spectra indicates that there are some structure–spectra correlations. For a given series of isomorphous complexes the sum of the difference between the values of the vibrational modes of uncoordinated benzimidazole and coordinated to metal ion benzimidazole was found to increase in the order of the second ionization potentials of metals.  相似文献   

18.
A close-coupling approach to the calculation of quantal vibrational transition probabilities for the fixed angle scattering of a linear triatomic molecule with another linear triatomic molecule is described. The method is applied to the 12CO2+13C02 collisional system. For a calculated inelastic transition probability to have an appreciable magnitude, it is found that the amount of energy transferred in a transition must be very small and just one quantum of energy must be exchanged between either the symmetric stretch or the asymmetric stretch vibrational modes of 12C02 and 13CO2. For collisional energies away from threshold, the probabilities for transitions involving the symmetric stretch 12CO2 and 13CO2 modes are insensitive to long range multipole terms in the potential energy surface, while the probabilities for energy exchange between the asymmetric stretch modes are considerably diminished when the long range terms are removed from the potential energy surface. A brief discussion is presented on the possibilities of extending the technique to the calculation of vibrational excitation cross sections for three-dimensional triato—triatom collisions.  相似文献   

19.
In this study the M(IN)(2)Ni(CN)(4) [where M: Co, Ni, and Cd, and IN: isonicotinic acid, abbreviated to M-Ni-IN] tetracyanonickelate and some metal halide complexes with the following stoichiometries: M(IN)(6)X(2) (M: Co; X: Cl and Br, and M: Ni; X: Cl, Br and I) and Hg(IN)X(2) (X: Cl, Br, and I) were synthesized for the first time. Certain chemical formulas were determined using elemental analysis results. The FT-IR and Raman spectra of the metal halide complexes were reported in the 4000-0 cm(-1) region. The FT-IR spectra of tetracyanonickelate complexes were also reported in the 4000-400 cm(-1) region. Vibrational assignments were given for all the observed bands. For a given series of isomorphous complexes, the sum of the difference between the values of the vibrational modes of the free isonicotinic acid and coordinated ligand was found to increase in the order of the second ionization potentials of metals. The frequency shifts were also found to be depending on the halogen. The proposed structure of tetracyanonickelate complexes consists of polymeric layers of /M-Ni(CN)(4)/(infinity) with the isonicotinic acid molecules bound directly to the metal atom.  相似文献   

20.
获取了覆盖N-甲基吡咯-2-甲醛(NMPCA)A-带和B-带电子吸收共7个激发波长的共振拉曼光谱,并结合含时密度泛函理论(TD-DFT)方法研究了的A-带和B-带电子激发和Franck-Condon区域结构动力学.TD-B3LYP/6-311++G(d,p)计算表明:A-带和B-带电子吸收的跃迁主体为π→π*.共振拉曼光谱可以指认为,11-13振动模式(A-带激发)或者7-11振动模式(B-带激发)的基频、倍频和组合频,其中C=O伸缩振动(ν7)、环的变形振动+N1-C6伸缩振动(ν17)、环的变形振动(ν21)和C6-N1-C2/C2-C3-C4不对称伸缩振动(ν14)占据了绝大部分.这表明NMPCA的Sπ激发态结构动力学主要沿C=O伸缩振动、环的变形振动和环上N1-C6伸缩振动等反应坐标展开.在同一溶剂的共振拉曼光谱中随激发波长由长变短,ν7与ν14的强度比呈现出由强变弱再变强的现象,这种变化规律被认为与Franck-Condon区域Sn/Sπ态混合或势能面交叉有关.溶剂对Sn/Sπ态混合或势能面交叉具有调控作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号