首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sperm whales generate transient sounds (clicks) when foraging. These clicks have been described as echolocation sounds, a result of having measured the source level and the directionality of these signals and having extrapolated results from biosonar tests made on some small odontocetes. The authors propose a passive acoustic technique requiring only one hydrophone to investigate the acoustic behavior of free-ranging sperm whales. They estimate whale pitch angles from the multipath distribution of click energy. They emphasize the close bond between the sperm whale's physical and acoustic activity, leading to the hypothesis that sperm whales might, like some small odontocetes, control click level and rhythm. An echolocation model estimating the range of the sperm whale's targets from the interclick interval is computed and tested during different stages of the whale's dive. Such a hypothesis on the echolocation process would indicate that sperm whales echolocate their prey layer when initiating their dives and follow a methodic technique when foraging.  相似文献   

2.
Analysis of the usual click rates of sperm whales (Physeter macrocephalus) at Kaikoura, New Zealand, confirms the potential for assessing abundance via "click counting." Usual click rates over three dive cycles each of three photographically identified whales showed that 5 min averages of usual click rate did not differ significantly within dives, among dives of the same whale or among whales. Over the nine dives (n= 13 728 clicks) mean usual click rate was 1.272 clicks s(-1) (95% CI= 0.151). On average, individual sperm whales at Kaikoura spent 60% of their time usual clicking in winter and in summer. There was no evidence that whale identity or stage of the dive recorded affects significantly the percentage of time spent usual clicking. Differences in vocal behavior among sperm whale populations worldwide indicate that estimates of abundance that are based on click rates need to based on data from the population of interest, rather than from another population or some global average.  相似文献   

3.
The vocal repertoire of Pacific walruses includes underwater sound pulses referred to as knocks and bell-like calls. An extended acoustic monitoring program was performed in summer 2007 over a large region of the eastern Chukchi Sea using autonomous seabed-mounted acoustic recorders. Walrus knocks were identified in many of the recordings and most of these sounds included multiple bottom and surface reflected signals. This paper investigates the use of a localization technique based on relative multipath arrival times (RMATs) for potential behavior studies. First, knocks are detected using a semi-automated kurtosis-based algorithm. Then RMATs are matched to values predicted by a ray-tracing model. Walrus tracks with vertical and horizontal movements were obtained. The tracks included repeated dives between 4.0 m and 15.5 m depth and a deep dive to the sea bottom (53 m). Depths at which bell-like sounds are produced, average knock production rate and source levels estimates of the knocks were determined. Bell sounds were produced at all depths throughout the dives. Average knock production rates varied from 59 to 75 knocks/min. Average source level of the knocks was estimated to 177.6 ± 7.5 dB re 1 μPa peak @ 1 m.  相似文献   

4.
Some bioacousticians have used a single hydrophone to calculate the depth/range of phonating diving animals. The standard one-hydrophone localization method uses multipath transmissions (direct path, sea surface, and seafloor reflections) of the animal phonations as a substitute for a vertical hydrophone array. The standard method requires three multipath transmissions per phonation. Bioacousticians who study foraging sperm whales usually do not have the required amount of multipath transmissions. However, they usually detect accurately (using shallow hydrophones towed by research vessels) direct path transmissions and sea surface reflections of sperm whale phonations (clicks). Sperm whales emit a few thousand clicks per foraging dive, therefore researchers have this number of direct path transmissions and this number of sea surface reflections per dive. The author describes a Bayesian method to combine the information contained in those acoustic data plus visual observations. The author's tests using synthetic data show that the accurate estimation of the depth/range of sperm whales is possible using a single hydrophone and without using any seafloor reflections. This method could be used to study the behavior of sperm whales using a single hydrophone in any location no matter what the depth, the relief, or the constitution of the seafloor might be.  相似文献   

5.
A three-dimensional localization method for tracking sperm whales with as few as one sensor is demonstrated. Based on ray-trace acoustic propagation modeling, the technique exploits multipath arrival information from recorded sperm whale clicks and can account for waveguide propagation physics like interaction with range-dependent bathymetry and ray refraction. It also does not require ray identification (i.e., direct, surface reflected) while utilizing individual ray arrival information, simplifying automation efforts. The algorithm compares the arrival pattern from a sperm whale click to range-, depth-, and azimuth-dependent modeled arrival patterns in order to estimate whale location. With sufficient knowledge of azimuthally dependent bathymetry, a three-dimensional track of whale motion can be obtained using data from a single hydrophone. Tracking is demonstrated using data from acoustic recorders attached to fishing anchor lines off southeast Alaska as part of efforts to study sperm whale depredation of fishing operations. Several tracks of whale activity using real data from one or two hydrophones have been created, and three are provided to demonstrate the method, including one simultaneous visual and acoustic localization of a sperm whale actively clicking while surfaced. The tracks also suggest that whales' foraging is shallower in the presence of a longline haul than without.  相似文献   

6.
Three-dimensional dive trajectories of three sperm whales in the Gulf of Mexico have been obtained by measuring the relative arrival times and bearings of the animals' acoustic multipath reflections, using two elements of a towed hydrophone array deployed at an unknown depth and orientation. Within the first 6-12 min of the start of a dive, the intervals between successive "clicks" of all three whales corresponded closely with the two-way travel time of an acoustic pulse traveling vertically between the animals' position and the ocean bottom. The click spectra contained multiple peaks, including a faint band of energy originally centered near 10 kHz. As the animals descended over 500 m in depth, the center frequency of this band shifted to nearly 15 kHz, but subsequently remained near this value during the rest of the dive. This frequency shift is consistent with that expected from energy scattering from an ensemble of incompressible small-scale air-filled resonators, with diameters on the order of 4 mm. One possible candidate for such an ensemble is proposed to reside in the collapsed frontal sac of the animal. A comparison of the received levels for the bottom and direct multipath arrivals indicates that the whales' acoustic directivity must range between 10-30 dB in the 5-20-kHz region.  相似文献   

7.
Sperm whales (Physeter macrocephalus) have learned to remove fish from demersal longline gear deployments off the eastern Gulf of Alaska, and are often observed to arrive at a site after a haul begins, suggesting a response to potential acoustic cues like fishing-gear strum, hydraulic winch tones, and propeller cavitation. Passive acoustic recorders attached to anchorlines have permitted continuous monitoring of the ambient noise environment before and during fishing hauls. Timing and tracking analyses of sperm whale acoustic activity during three encounters indicate that cavitation arising from changes in ship propeller speeds is associated with interruptions in nearby sperm whale dive cycles and changes in acoustically derived positions. This conclusion has been tested by cycling a vessel engine and noting the arrival of whales by the vessel, even when the vessel is not next to fishing gear. No evidence of response from activation of ship hydraulics or fishing gear strum has been found to date.  相似文献   

8.
9.
A recently described population of minke whales (Balaenoptera acutorostrata) offered a unique opportunity to study its acoustic behavior. The often-inquisitive dwarf minke whale is seen on the Great Barrier Reef nearly coincident with its suspected calving and breeding seasons. During drifting encounters with whales, a towed hydrophone array was used to record sounds for subsequent localization of sound sources. Shipboard and in-water observers linked these sounds to the closely circling minke whale. A complex and stereotyped sound sequence, the "star-wars" (SW) vocalization, was recorded during a series of visual and acoustic observations. The SW vocalization spanned a wide frequency range (50 Hz-9.4 kHz) and was composed of distinct and stereotypically repeated units with both amplitude and frequency-modulated components. Broadband source levels between 150 and 165 dB re 1 microPa at 1 m were calculated. Passive acoustic studies can utilize this distinct vocalization to help determine the behavior, distribution, and movements of this animal. While the SW vocalization's function remains unknown, the regularly repeated and complex sound sequence was common in low latitude, winter month aggregations of minke whales. At this early stage, the SW vocalization appears similar to the songs of other whale species and has characteristics consistent with those of reproductive advertisement displays.  相似文献   

10.
Matched-field processing (MFP) and global inversion techniques have been applied to vocalizations from four whales recorded on a 48-element tilted vertical array off the Channel Islands in 1996. Global inversions from selected whale calls using as few as eight elements extracted information about the surrounding ocean bottom composition, array shape, and the animal's position. These inversion results were then used to conduct straightforward MFP on other calls. The sediment sound-speed inversion estimates are consistent with those derived from sediment samples collected in the area. In general, most animals swam from the east to west, but one animal remained within approximately 500 m of its original position over 45 min. All whales vocalized between 10 and 40 m depth. Three acoustic sequences are discussed in detail: the first illustrating a match between an acoustic track and visual sighting, the second tracking two whales to ranges out to 8 km, and the final sequence demonstrating high-resolution dive profiles from an animal that changed its course to avoid the research platform FLIP (floating instrument platform). This last whale displayed an unusual diversity of signals that include three strong frequency-modulated (FM) downsweeps which contain possible signs of an internal resonance. The arrival of this same whale coincided with a sudden change in oceanographic conditions.  相似文献   

11.
Multiple pulses can often be distinguished in the clicks of sperm whales (Physeter macrocephalus). Norris and Harvey [in Animal Orientation and Navigation, NASA SP-262 (1972), pp. 397-417] proposed that this results from reflections within the head, and thus that interpulse interval (IPI) is an indicator of head length, and by extrapolation, total length. For this idea to hold, IPIs must be stable within individuals, but differ systematically among individuals of different size. IPI stability was examined in photographically identified individuals recorded repeatedly over different dives, days, and years. IPI variation among dives in a single day and days in a single year was statistically significant, although small in magnitude (it would change total length estimates by <3%). As expected, IPIs varied significantly among individuals. Most individuals showed significant increases in IPIs over several years, suggesting growth. Mean total lengths calculated from published IPI regressions were 13.1 to 16.1 m, longer than photogrammetric estimates of the same whales (12.3 to 15.3 m). These discrepancies probably arise from the paucity of large (12-16 m) whales in data used in published regressions. A new regression is offered for this size range.  相似文献   

12.
We present a passive acoustic method for estimating the density of echolocating cetaceans that dive synchronously, based on isolation of dive starts using a field of distributed bottom-mounted hydrophones. The method assumes that all dive starts of the target species within a defined area are detected, and that independent estimates of dive rate and group size are available. We apply the method to estimate the density of Blainville’s beaked whales (Mesoplodon densirostris) at the Atlantic Undersea Test and Evaluation Center (AUTEC) in the Bahamas during the time of a multi-ship active sonar exercise. Estimated densities for the 65 h before the exercise, 68 h during, 65 h after, and the final 43 h monitored were 16.99 (95% CI 13.47-21.43), 4.76 (3.78-6.00), 8.67 (6.87-10.94), and 24.75 (19.62-31.23) respectively, illustrating a possible avoidance reaction. Results for the 65 h before were compared with those from the click count density estimation algorithm developed by Marques et al. [Marques T, Thomas L, Ward J, DiMarzio N, Tyack P. Estimating cetacean population density using fixed passive acoustic sensors. An example with Blainville’s beaked whales. J Acoust Soc Am 2009;125(4):1982-1994]. The click count-based estimate was 19.23 animals/1000 km2 (95% CI 12.69-29.13)—similar (13% higher), but with higher variance (CV 21% for click count method versus 12% for the dive count method). We discuss potential reasons for the differences, and compare the utility of the two methods. For both, obtaining reliable estimates of the factors that scale the measured quantity (dive starts or detected clicks) to density is the key hurdle. Defining the area monitored in the dive count method can also be problematic, particularly if the array is small.  相似文献   

13.
The "resident" ecotype of killer whales (Orcinus orca) in the waters of British Columbia and Washington State have a strong preference for Chinook salmon even in months when Chinook comprise less than about 10% of the salmon population. The foraging behavior of killer whales suggests that they depend on echolocation to detect and recognize their prey. In order to determine possible cues in echoes from salmon species, a series of backscatter measurements were made at the Applied Physics Laboratory (Univ. of Wash.) Facility on Lake Union, on three different salmon species using simulated killer whale echolocation signals. The fish were attached to a monofilament net panel and rotated while echoes were collected, digitized and stored on a laptop computer. Three transducer depths were used; same depth, 22° and 45° above the horizontal plane of the fish. Echoes were collected from five Chinook, three coho and one sockeye salmon. Radiograph images of all specimens were obtained to examine the swimbladder shape and orientation. The results show that echo structure from similar length but different species of salmon were different and probably recognizable by foraging killer whales.  相似文献   

14.
Daily acoustic calling rates of Eastern North Pacific (ENP) gray whales were measured on 6 days during 1 mo of their 2008 breeding season in the sheltered coastal lagoon of Laguna San Ignacio in Baja California, Mexico. Visual counts of whales determined that the numbers of single animals in the lower lagoon more than tripled over the observation period. All call types showed production peaks in the early morning and evening with minimum rates generally detected in the early afternoon. For four of the five observation days, the daily number of "S1"-type calls increased roughly as the square of the number of the animals in the lower lagoon during both daytime and nighttime. This relationship persisted when raw call counts were adjusted for variations in background noise level, using a simple propagation law derived from empirical measurements. The one observation day that did not fit the square-law relationship occurred during a week when the group size in the lagoon increased rapidly. These results suggest that passive acoustic monitoring does not measure gray whale group size directly but monitors the number of connections in the social network, which rises as roughly M(2)/2 for a group size M.  相似文献   

15.
The acoustic calls of blue whales off California are described with visual observations of behavior and with acoustic tracking. Acoustic call data with corresponding position tracks are analyzed for five calling blue whales during one 100-min time period. Three of the five animals produced type A-B calls while two produced another call type which we refer to as type D. One of the animals producing the A-B call type was identified as male. Pauses in call production corresponded to visually observed breathing intervals. There was no apparent coordination between the calling whales. The average call source level was calculated to be 186 dB re: 1 muPa at 1 m over the 10-110-Hz band for the type B calls. On two separate days, female blue whales were observed to be silent during respective monitoring periods of 20 min and 1 h.  相似文献   

16.
Bowhead whales, Balaena mysticetus, migrate west during fall approximately 10-75 km off the north coast of Alaska, passing the petroleum developments around Prudhoe Bay. Oil production operations on an artificial island 5 km offshore create sounds heard by some whales. As part of an effort to assess whether migrating whales deflect farther offshore at times with high industrial noise, an acoustical approach was selected for localizing calling whales. The technique incorporated DIFAR (directional frequency and recording) sonobuoy techniques. An array of 11 DASARs (directional autonomous seafloor acoustic recorders) was built and installed with unit-to-unit separation of 5 km. When two or more DASARs detected the same call, the whale location was determined from the bearing intersections. This article describes the acoustic methods used to determine the locations of the calling bowhead whales and shows the types and precision of the data acquired. Calibration transmissions at GPS-measured times and locations provided measures of the individual DASAR clock drift and directional orientation. The standard error of the bearing measurements at distances of 3-4 km was approximately 1.35 degrees after corrections for gain imbalance in the two directional sensors. During 23 days in 2002, 10,587 bowhead calls were detected and 8383 were localized.  相似文献   

17.
A simple passive acoustic monitoring (PAM) setup was used to localize and track beluga whales underwater in three dimensions (3D) in a fjord. In June 2009, beluga clicks were recorded from a cabled hydrophone array in a regularly frequented habitat in Eastern Canada. Beluga click energy was concentrated in the 30-50 kHz frequency band. The click trains detected on several hydrophones were localized from their time difference of arrivals. Cluster analysis linked localizations into tracks based on criteria of spatial and temporal proximity. At close ranges from the array, the localized click-train series allowed three-dimensional tracking of a beluga during its dive. Clicks within a train spanned a large range of durations, inter-click intervals, source levels and bandwidths. Buzzes sometimes terminated the trains. Repeated click packets were frequent. All click characteristics are consistent with oblique observations from the beam axis, and ordered variation of the source pattern during a train, likely resulting from a scan of angles from the beam axis, was observed before click trains indicated focusing of the echolocation clicks in one direction. The click-train series is interpreted as echolocation chasing for preys during a foraging dive. Results show that a simple PAM system can be configured to passively and effectively 3D track wild belugas and small odontocetes in their regularly frequented habitat.  相似文献   

18.
Sounds were recorded from bowhead whales migrating past Pt. Barrow, AK, to the Canadian Beaufort Sea. They mainly consisted of various low-frequency (25- to 900-Hz) moans and well-defined sound sequences organized into "song" (20-5000 Hz) recorded with our 2.46-km hydrophone array suspended from the ice. Songs were composed of up to 20 repeated phrases (mean, 10) which lasted up to 146 s (mean, 66.3). Several bowhead whales often were within acoustic range of the array at once, but usually only one sang at a time. Vocalizations exhibited diurnal peaks of occurrence (0600-0800, 1600-1800 h). Sounds which were located in the horizontal plane had peak source spectrum levels as follows--44 moans: 129-178 dB re: 1 microPa, 1 m (median, 159); 3 garglelike utterances: 152, 155, and 169 dB; 33 songs: 158-189 dB (median, 177), all presumably from different whales. Based on ambient noise levels, measured total propagation loss, and whale sound source levels, our detection of whale sounds was theoretically noise-limited beyond 2.5 km (moans) and beyond 10.7 km (songs), a model supported by actual localizations. This study showed that over much of the shallow Arctic and sub-Arctic waters, underwater communications of the bowhead whale would be limited to much shorter ranges than for other large whales in lower latitude, deep-water regions.  相似文献   

19.
Echolocation clicks from Norwegian killer whales feeding on herring schools were recorded using a four-hydrophone array. The clicks had broadband bimodal frequency spectra with low and high frequency peaks at 24 and 108 kHz, respectively. The -10 dB bandwidth was 35 kHz. The average source level varied from 173 to 202 dB re 1 microPa (peak-to-peak) at 1 m. This is considerably lower than source levels described for Canadian killer whales foraging on salmon. It is suggested that biosonar clicks of Norwegian killer whales are adapted for localization of prey with high target strength and acute hearing abilities.  相似文献   

20.
Vocal communication within and between groups of individuals has been described extensively in birds and terrestrial mammals, however, little is known about how cetaceans utilize their sounds in their natural environment. Resident killer whales, Orcinus orca, live in highly stable matrilines and exhibit group-specific vocal dialects. Single call types cannot exclusively be associated with particular behaviors and calls are thought to function in group identification and intragroup communication. In the present study call usage of three closely related matrilines of the Northern resident community was compared in various intra- and intergroup contexts. In two out of the three matrilines significant changes in vocal behavior depending both on the presence and identity of accompanying whales were found. Most evidently, family-specific call subtypes, as well as aberrant and variable calls, were emitted at higher rates, whereas "low arousal" call types were used less in the presence of matrilines from different pods, subclans, or clans. Ways in which the observed changes may function both in intra- and intergroup communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号