首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local-density approximation of density functional theory (DFT) is remarkably accurate, for instance, for geometries and frequencies, and the generalized gradient approximations have also made bond energies quite reliable. Sometimes, however, one meets with failure in individual cases. One of the possible routes towards better functionals would be the incorporation of orbital dependence (which is an implicit density dependency) in the functionals. We discuss this approach both for energies and for response properties. One possibility is the use of the Hartree-Fock-type exchange energy expression as orbital-dependent functional. We will argue that in spite of the increasing popularity of this approach, it does not offer any advantage over Hartree-Fock for energies. We will advocate not to apply the separation of exchange and correlation, which is so ingrained in quantum chemistry, but to model both simultaneously. For response properties the energies and shapes of the virtual orbitals are crucial. We will discuss the benefits that Kohn-Sham potentials can offer which are derived from either an orbital-dependent energy functional, including the exact-exchange functional, or which can be obtained directly as orbital-dependent functional. We highlight the similarity of the Hartree-Fock and Kohn-Sham occupied orbitals and orbital energies, and the essentially different meanings the virtual orbitals and orbital energies have in these two models. We will show that these differences are beneficial for DFT in the case of localized excitations (in a small molecule or in a fragment), but are detrimental for charge-transfer excitations. Again, orbital dependency, in this case in the exchange-correlation kernel, offers a solution.  相似文献   

2.
3.
This paper deals with hybrid functionals that contain exact exchange energy and are the most popular and effective functionals in modern density functional theory. Emphasis is laid on generalization of the notion of a “hybrid functional,” which arises from the introduction of the spatial dependence of the exact exchange admixture (local hybrid functionals). Problems inherent in hybrid functionals are considered along with problems inherent in a wider class of so-called orbital-dependent functionals. In particular, the technique for constructing the local and multiplicative potentials, including the optimized effective potential method, is considered in detail. The theoretical approaches under study are illustrated by calculations of atomization molecular energies and magnetic resonance parameters.  相似文献   

4.
Frozen density embedding (FDE) theory is one of the major techniques aiming to bring modeling of extended chemical systems into the realm of high accuracy calculations. To improve its accuracy it is of interest to develop kinetic energy density functional approximations specifically for FDE applications. In the study reported here we focused on optimizing parameters of a generalized gradient approximation-like kinetic energy functional with the purpose of better describing electron excitation energies. We found that our optimized parametrizations, named excPBE and excPBE-3 (as these are derived from a Perdew-Burke-Ernzerhof-like parametrization), could not yield improvements over available functionals when applied on a test set of systems designed to probe solvatochromic shifts. Moreover, as several different functionals yielded very similar errors to the simple local-density approximation (LDA), it is questionable whether it is worthwhile to go beyond the LDA in this context.  相似文献   

5.
Local hybrid functionals with their position-dependent exact-exchange admixture are a conceptually simple and promising extension of the concept of a hybrid functional. Local hybrids based on a simple mixing of the local spin density approximation (LSDA) with exact exchange have been shown to be successful for thermochemistry, reaction barriers, and a range of other properties. So far, the combination of this generation of local hybrids with an LSDA correlation functional has been found to give the most favorable results for atomization energies, for a range of local mixing functions (LMFs) governing the exact-exchange admixture. Here, we show that the choice of correlation functional to be used with local hybrid exchange crucially influences the parameterization also of the exchange part as well as the overall performance. A novel ansatz for the correlation part of local hybrids is suggested based on (i) range-separation of LSDA correlation into short-range (SR) and long-range (LR) parts, and (ii) partial or full elimination of the one-electron self-correlation from the SR part. It is shown that such modified correlation functionals allow overall larger exact exchange admixture in thermochemically competitive local hybrids than before. This results in improvements for reaction barriers and for other properties crucially influenced by self-interaction errors, as demonstrated by a number of examples. Based on the range-separation approach, a fresh view on the breakdown of the correlation energy into dynamical and non-dynamical parts is suggested.  相似文献   

6.
Local hybrid functionals with position-dependent exact-exchange admixture are a promising new generation of exchange-correlation functionals for a large variety of applications. So far, the local mixing functions (LMFs) determining the position dependence have been largely constructed in an ad hoc manner, albeit based on physical reasoning. Here the basic formalism of the adiabatic connection is employed to investigate the formal basis of local hybrids and to construct a priori LMFs. Both a local spin density approximation to the LMF (AC-LSDA LMF) and generalized gradient approximation approximations (AC-PW91 LMF and AC-PBE LMF) turn out to provide inferior performance when used in local hybrids to compute atomization energies and reaction barriers compared to previous semiempirical LMFs. This is rationalized by limited flexibility of these first-principles LMFs and some basic limitations of the adiabatic connection formalism in this context. Graphical analyses and formal considerations provide nevertheless important new insight into the physical background of local hybrid functionals.  相似文献   

7.
Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b(tau(W)(r)tau(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers.  相似文献   

8.
Time-dependent density functional theory (TDDFT) is employed to investigate exchange-correlation-functional dependence of the vertical core-excitation energies of several molecules including H, C, N, O, and F atoms. For the local density approximation (LDA), generalized gradient approximation (GGA), and meta-GGA, the calculated X1s-->pi* excitation energies (X = C, N, O, and F) are severely underestimated by more than 13 eV. On the other hand, time-dependent Hartree-Fock (TDHF) overestimates the excitation energies by more than 6 eV. The hybrid functionals perform better than pure TDDFT because HF exchange remedies the underestimation of pure TDDFT. Among these hybrid functionals, the Becke-Half-and-Half-Lee-Yang-Parr (BHHLYP) functional including 50% HF exchange provides the smallest error for core excitations. We have also discovered the systematic trend that the deviations of TDHF and TDDFT with the LDA, GGA, and meta-GGA functionals show a strong atom-dependence. Namely, their deviations become larger for heavier atoms, while the hybrid functionals are significantly less atom-dependent.  相似文献   

9.
The Heyd-Scuseria-Ernzerhof (HSE) density functionals are popular for their ability to improve upon the accuracy of standard semilocal functionals such as Perdew-Burke-Ernzerhof (PBE), particularly for semiconductor band gaps. They also have a reduced computational cost compared to hybrid functionals, which results from the restriction of Fock exchange calculations to small inter-electron separations. These functionals are defined by an overall fraction of Fock exchange and a length scale for exchange screening. We systematically examine this two-parameter space to assess the performance of hybrid screened exchange (sX) functionals and to determine a balance between improving accuracy and reducing the screening length, which can further reduce computational costs. Three parameter choices emerge as useful: "sX-PBE" is an approximation to the sX-LDA screened exchange density functionals based on the local density approximation (LDA); "HSE12" minimizes the overall error over all tests performed; and "HSE12s" is a range-minimized functional that matches the overall accuracy of the existing HSE06 parameterization but reduces the Fock exchange length scale by half. Analysis of the error trends over parameter space produces useful guidance for future improvement of density functionals.  相似文献   

10.
We have studied the interaction of atomic hydrogen with (5,5) and (10,0) single-walled carbon nanotubes (SWNT) using density functional theory. These calculations use Gaussian orbitals and periodic boundary conditions. We compare results from the local spin density approximation, generalized gradient approximation (GGA), and hybrid density functionals. We have first kept the SWNT geometric structure fixed while a single H atom approaches the tube on top of a carbon atom. In that case, a weakly bound state with binding energies from -0.8 to -0.4 eV was found. Full geometry relaxation leads to a strong SWNT deformation, weakening the nearest C-C bonds and increasing the binding energy by about 1 eV. Full hydrogen coverage of the (5,5) SWNT converts this metallic nanotube into an insulator with a band gap of 3.4 eV for the GGA functional and 4.8 eV for the hybrid functional. Hybrid functionals perform similar to pure density functional theory functionals for the calculation of binding energies while band gaps critically depend on the functional choice.  相似文献   

11.
We have carried out a detailed evaluation of the performance of all classes of density functional theory (DFT) for describing the potential energy surface (PES) of a wide range of nucleophilic substitution (SN2) reactions involving, amongst others, nucleophilic attack at carbon, nitrogen, silicon, and sulfur. In particular, we investigate the ability of the local density approximation (LDA), generalized gradient approximation (GGA), meta-GGA as well as hybrid DFT to reproduce high-level coupled cluster (CCSD(T)) benchmarks that are close to the basis set limit. The most accurate GGA, meta-GGA, and hybrid functionals yield mean absolute deviations of about 2 kcal/mol relative to the coupled cluster data, for reactant complexation, central barriers, overall barriers as well as reaction energies. For the three nonlocal DFT classes, the best functionals are found to be OPBE (GGA), OLAP3 (meta-GGA), and mPBE0KCIS (hybrid DFT). The popular B3LYP functional is not bad but performs significantly worse than the best GGA functionals. Furthermore, we have compared the geometries from several density functionals with the reference CCSD(T) data. The same GGA functionals that perform best for the energies (OPBE, OLYP), also perform best for the geometries with average absolute deviations in bond lengths of 0.06 A and 0.6 degrees, even better than the best meta-GGA and hybrid functionals. In view of the reduced computational effort of GGAs with respect to meta-GGAs and hybrid functionals, let alone coupled cluster, we recommend the use of accurate GGAs such as OPBE or OLYP for the study of SN2 reactions.  相似文献   

12.
Reiher M 《Inorganic chemistry》2002,41(25):6928-6935
The theoretical study of spin-crossover compounds is very challenging as those parts of the experimental findings that concern the electronic structure of these compounds can currently hardly be reproduced because of either technical limitations of highly accurate ab initio methods or because of inaccuracies of density functional methods in the prediction of low-spin/high-spin energy splitting. However, calculations with reparametrized density functionals on molecules of the thermal spin-crossover type can give improved results when compared with experiment for close-lying states of different spin and are therefore important for, e.g., transition metal catalysis. A classification of transition metal compounds within hybrid density functional theory is given to distinguish standard, critical, and complicated cases. From the class of complicated cases we choose the prominent spin-crossover compound Fe(phen)(2)(NCS)(2) and show in a first step how the electronic contribution to the energy splitting can be calculated. In a second step, the vibrational effects on the spin flip are investigated within the harmonic force-field approximation of the isolated-molecule approach. A main result of the study is the necessity of exact-exchange reduction in hybrid density functionals to arrive at reasonable electronic energy splittings. The study resolves problems that originated from the use of standard density functionals, which are not able to reproduce the electronic contribution to the low-spin/high-spin splitting correctly, and demonstrates to which extent reparametrized density functionals can be used for the prediction of the spin-crossover effect.  相似文献   

13.
We present a database of 21 bond dissociation energies for breaking metal-ligand bonds. The molecules in the metal-ligand bond energy database are AgH, CoH, CoO+, CoOH+, CrCH3+, CuOH2+, FeH, Fe(CO)5, FeO, FeS, LiCl, LiO, MgO, MnCH3NiCH2+, Ni(CO)4, RhC, VCO+, VO, and VS. We have also created databases of metal-ligand bond lengths and atomic ionization potentials. The molecules used for bond lengths are AgH, BeO, CoH, CoO+, FeH, FeO, FeS, LiCl, LiO, MgO, RhC, VO, and VS and the ionization potentials are for the following atoms: C, Co, Cr, Cu, Ni, O, and V. The data were chosen based on their diversity and expected reliability, and they are used along with three previously developed databases (transition metal dimer bond energies and bond lengths and main-group molecular atomization energies) for assessing the accuracy of several kinds of density functionals. In particular, we report tests for 42 previously defined functionals: 2 local spin density approximation (LSDA) functionals, 14 generalized gradient approximation (GGA) methods, 13 hybrid GGA methods, 7 meta GGA methods, and 8 hybrid meta GGA methods. In addition to these functionals, we also examine the effectiveness of scaling the correlation energy by testing 13 functionals with scaled or no gradient-corrected correlation energy, and we find that functionals of this kind are more accurate for metal-metal and metal-ligand bonds than any of the functionals already in the literature. We also present a readjusted GGA and a hybrid GGA with parameters adjusted for metals. When we consider these 57 functionals for metal-ligand and metal-metal bond energies simultaneously with main-group atomization energies, atomic ionization potentials, and bond lengths we find that the most accurate functional is G96LYP, followed closely by MPWLYP1M (new in this article), XLYP, BLYP, and MOHLYP (also new in this article). Four of these five functionals have no Hartree-Fock exchange, and the other has only 5%. As a byproduct of this work we introduce a convenient diagnostic, called the B1 diagnostic, for ascertaining the multireference character in a bond.  相似文献   

14.
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.  相似文献   

15.
16.
We report the first implementation of the calculation of electronic g-tensors by density functional methods with hybrid functionals. Spin-orbit coupling is treated by the atomic meanfield approximation. g-Tensors for a set of small main group radicals and for a series of ten 3d and two 4d transition metal complexes have been compared using the local density approximation (VWN functional), the generalized gradient approximation (BP86 functional), as well as B3-type (B3PW91) and BH-type (BHPW91) hybrid functionals. For main group radicals, the effect of exact-exchange mixing is small. In contrast, significant differences between the various functionals arise for transition metal complexes. As has been shown previously, local and in particular gradient-corrected functionals tend to underestimate the "paramagnetic" contributions to the g-tensors in these cases and thereby recover only about 40-50% of the range of experimental g-tensor components. This is improved to ca. 60% by the B3PW91 functional, which also gives slightly reduced standard deviations. The range increases to almost 100% using the half-and-half functional BHPW91. However, the quality of the correlation with experimental data worsens due to a significant overestimate of some intermediate g-tensor values. The worse performance of the BHPW91 functional in these cases is accompanied by spin contamination. Although none of the functionals tested thus appears to be ideal for the treatment of electronic g-tensors in transition metal complexes, the B3PW91 hybrid functional exhibited the overall most satisfactory performance. Apart from the validation of hybrid functionals, some aspects in the treatment of spin-orbit contributions to the g-tensor are discussed.  相似文献   

17.
We propose a data set of bond lengths for 8 selected transition metal dimers (Ag(2), Cr(2), Cu(2), CuAg, Mo(2), Ni(2), V(2), and Zr(2)) and another data set containing their atomization energies and the atomization energy of ZrV, and we use these for testing density functional theory. The molecules chosen for the test sets were selected on the basis of the expected reliability of the data and their ability to constitute a diverse and representative set of transition element bond types while the data sets are kept small enough to allow for efficient testing of a large number of computational methods against a very reliable subset of experimental data. In this paper we test 42 different functionals: 2 local spin density approximation (LSDA) functionals, 12 generalized gradient approximation (GGA) methods, 13 hybrid GGAs, 7 meta GGA methods, and 8 hybrid meta GGAs. We find that GGA density functionals are more accurate for the atomization energies of pure transition metal systems than are their meta, hybrid, or hybrid meta analogues. We find that the errors for atomization energies and bond lengths are not as large if we limit ourselves to dimers with small amounts of multireference character. We also demonstrate the effects of increasing the fraction of Hartree-Fock exchange in multireference systems by computing the potential energy curve for Cr(2) and Mo(2) with several functionals. We also find that BLYP is the most accurate functional for bond energies and is reasonably accurate for bond lengths. The methods that work well for transition metal bonds are found to be quite different from those that work well for organic and other main group chemistry.  相似文献   

18.
Time-dependent density functional theory (TDDFT) is now well established as an efficient method for molecular excited state treatments. In this work, we introduce the resolution of the identity approximation for the Coulomb energy (RI-J) to excited state gradient calculations. In combination with nonhybrid functionals, the RI-J approximation leads to speed ups in total timings of an order of magnitude compared to the conventional method; this is demonstrated for oligothiophenes with up to 40 monomeric units and adamantane clusters. We assess the accuracy of the computed adiabatic excitation energies, excited state structures, and vibrational frequencies on a set of 36 excited states. The error introduced by the RI-J approximation is found to be negligible compared to deficiencies of standard basis sets and functionals. Auxiliary basis sets optimized for ground states are suitable for excited state calculations with small modifications. In conclusion, the RI-J approximation significantly extends the scope of applications of analytical TDDFT derivative methods in photophysics and photochemistry.  相似文献   

19.
Following the suggestion of local hybrid functionals with position-dependent exact-exchange admixture [J. Jaramillo, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 1068 (2003)], a functional that mixes only local and exact exchange plus local correlation has been constructed. With a simple local mixing function for the position dependence, this Lh-SVWN functional provides atomization energies for the G2-1 set that are competitive with currently available state-of-the-art functionals like, e.g., B3LYP. This is achieved without generalized gradient approximations for exchange or correlation.  相似文献   

20.
We present the case for the nonempirical construction of density functional approximations for the exchange-correlation energy by the traditional method of "constraint satisfaction" without fitting to data sets, and present evidence that this approach has been successful on the first three rungs of "Jacob's ladder" of density functional approximations [local spin-density approximation (LSD), generalized gradient approximation (GGA), and meta-GGA]. We expect that this approach will also prove successful on the fourth and fifth rungs (hyper-GGA or hybrid and generalized random-phase approximation). In particular, we argue for the theoretical and practical importance of recovering the correct uniform density limit, which many semiempirical functionals fail to do. Among the beyond-LSD functionals now available to users, we recommend the nonempirical Perdew-Burke-Ernzerhof (PBE) GGA and the nonempirical Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA, and their one-parameter hybrids with exact exchange. TPSS improvement over PBE is dramatic for atomization energies of molecules and surface energies of solids, and small or moderate for other properties. TPSS is now or soon will be available in standard codes such as GAUSSIAN, TURBOMOLE, NWCHEM, ADF, WIEN, VASP, etc. We also discuss old and new ideas to eliminate the self-interaction error that plagues the functionals on the first three rungs of the ladder, bring up other related issues, and close with a list of "do's and don't's" for software developers and users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号