首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the observation of the redox state of the blue copper protein azurin on the single-molecule level. The fluorescence of a small fluorophore attached to the protein is modulated by the change in absorption of the copper center via fluorescence resonance energy transfer (FRET). In our model system, the fluorescence label Cy5 was coupled to azurin from Pseudomonas aeruginosa via cysteine K27C. The Cy5 fluorescence was partially quenched by the absorption of the copper center of azurin in its oxidized state. In the reduced state, absorption is negligible, and thus no quenching occurs. We report on single-molecule measurements, both in solution by using fluorescence correlation spectroscopy (FCS) combined with fluorescence intensity distribution analysis (FIDA), and on surfaces by using wide-field fluorescence microscopy.  相似文献   

2.
The tryptophan phosphorescence from a series of derivatives of Pseudomonas aeruginosa azurin has been monitored at 30 degrees C in pH 8.5 buffer solution. The phosphorescence lifetimes fall in the range of 230-270 ms for deoxygenated solutions of derivatives containing Cd(II), Cu(I), Co(II), Ni(II), Hg(II) or apoazurin. A weak signal with a lifetime of ca 130 ms is observed from solutions of oxidized native azurin, but this component is ascribed to a modified form of azurin in solution, i.e. protein heterogeneity, on the basis of the unique sensitivity to quenching by dioxygen. Aside from this minor component, the tryptophan phosphorescence in the Cu(II) protein appears to be fully quenched. The quenching is assigned an electron-transfer mechanism involving transient reduction of the metal center. The same mechanism is deemed to be responsible for fluorescence quenching in oxidized native azurin as well. These observations are of interest because aromatic groups like tryptophan may be conduits for physiological electron-transfer processes involving the copper center.  相似文献   

3.
The fluorescence behavior of molecular dyes at discrete distances from 1.5 nm diameter gold nanoparticles as a function of distance and energy is investigated. Photoluminescence and luminescence lifetime measurements both demonstrate quenching behavior consistent with 1/d(4) separation distance from dye to the surface of the nanoparticle. In agreement with the model of Persson and Lang, all experimental data show that energy transfer to the metal surface is the dominant quenching mechanism, and the radiative rate is unchanged throughout the experiment.  相似文献   

4.
Molecular recognition between two redox partners, azurin and cytochrome c 551, is studied at the single-molecule level by means of atomic force spectroscopy, after optimizing azurin adsorption on gold via sulfhydryl-terminated alkanethiol spacers. Our experiments provide evidence of specific interaction between the two partners, thereby demonstrating that azurin preserves biorecognition capability when assembled on gold via these spacers. Additionally, the measured single-molecule kinetic reaction rate results are consistent with a likely transient nature of the complex. Interestingly, the immobilization strategy adopted here, which was previously demonstrated to favor electrical coupling between azurin (AZ) and the metal electrode, is also found to facilitate AZ interaction with the redox partner, if compared to the case of AZ directly adsorbed on bare gold. Our findings confirm the key role of a well-designed immobilization strategy, capable of optimizing both biorecognition capabilities and electrical coupling with the conductive substrate at the single-molecule level, as a starting point for advanced applications of redox proteins for ultrasensitive biosensing.  相似文献   

5.
The majority of protein spectroelectrochemical methods utilize a diffusing, chemical mediator to exchange electrons between the electrode and the protein. In such methods, electrochemical potential control is limited by mediator choice and its ability to interact with the protein of interest. We report an approach for unmediated, protein spectroelectrochemistry that overcomes this limitation by adsorbing protein directly to thiol self-assembled monolayer (SAM) modified, thin (10 nm), semitransparent gold. The viability of the method is demonstrated with two diverse and important redox proteins: cytochrome c and azurin. Fast, reversible electrochemical signals comparable to those previously reported for these proteins on ordinary disk gold electrodes were observed. Although the quantity of protein in a submonolayer adsorbed at an electrode is expected to be insufficient for detection of UV-vis absorption bands based on bulk extinction coefficients, excellent spectra were detected for each of the proteins in the adsorbed state. Furthermore, AFM imaging confirmed that only a single layer of protein was adsorbed to the electrode. We hypothesize that interaction of the relatively broad gold surface plasmon with the proteins' electronic transitions results in surface signal enhancement of the molecular transitions of between 8 and 112 times, allowing detection of the proteins at much lower than expected concentrations. Since many other proteins are known to interact with gold SAMs and the technical requirements for implementation of these experiments are simple, this approach is expected to be very generally applicable to exploring mechanisms of redox proteins and enzymes as well as development of sensors and other redox protein based applications.  相似文献   

6.
The photoluminescence (PL) quantum yield of single-walled carbon nanotubes (SWNTs) is relatively low, with various quenching effects by metallic species reported in the literature. Here, we report the first case of metal enhanced fluorescence (MEF) of surfactant-coated carbon nanotubes on nanostructured gold substrates. The photoluminescence quantum yield of SWNTs is observed to be enhanced more than 10-fold. The dependence of fluorescence enhancement on metal-nanotube distance and on the surface plasmon resonance (SPR) of the gold substrate for various SWNT chiralities is measured to reveal the mechanism of enhancement. Surfactant-coated SWNTs in direct contact with metal exhibit strong MEF without quenching, suggesting a small quenching distance for SWNTs on the order of the van der Waals distance, beyond which the intrinsically fast nonradiative decay rate in nanotubes is little enhanced by metal. The metal enhanced fluorescence of SWNTs is attributed to radiative lifetime shortening through resonance coupling of SWNT emission to the reradiating dipolar plasmonic modes in the metal.  相似文献   

7.
Movement of a fluorophore-labeled antibody on the surface of a self-assembled monolayer (SAM) was observed by surface plasmon resonance and surface-plasmon field-enhanced fluorescence spectroscopy (SPFS). At an extremely low surface coverage, the antibody lies close to the biotin-functionalized SAM surface. As additional nonlabeled antibodies were bound, the fluorophore-labeled antibody was displaced away from the SAM surface (and thus the gold surface) due to the constraint imposed by the neighboring nonlabeled antibody. A greater SPFS fluorescence signal was observed due to the weaker fluorescence quenching at large distances from the gold surface. The magnitude of the displacement is proportional to the available biotin binding sites on the sensor surface. The displacement is theoretically explained on the basis of the relationship between the fluorescence intensity and the evanescent field amplitude within the dielectric medium.  相似文献   

8.
合成了一系列的锌酞菁染料。用循环伏安法测定了它们的氧化还原电位, 并测定了用典型的电子受体猝灭它们的荧光动力学数据。按电子转移模式确定了各染料-电子受体对的荧光猝灭速率常数κ_q对电子从染料向受体转移的自由能变化⊿G函数关系。根据测得的氧化还原电位和光谱数据计算出⊿G, 根据函数关系计算出κ_q, 代入到猝灭动力学数据κ_qτ。这样,就用非瞬态的实验估算出染料的荧光寿命r。与已知的实测文献值进行比较, r的大致范围是可信的。  相似文献   

9.
We report gold nanoparticle based FRET assay to monitor the cleavage of DNA by nucleases. Fluorescence signal enhancement is observed by a factor of 120 after the cleavage reaction in the presence of S1 nuclease. The mechanism of distant dependent fluorescence quenching has been discussed. Our experimental results on distance dependent fluorescence quenching match quite well with theoretical findings obtained from the fluorescence quenching model by Gersten and Nitzan (Surf. Sci. 1985, 158, 165). Our experimental observation paradigm for the design of optical based molecular ruler strategies at distances more than double the distances achievable using traditional dipole-dipole Columbic energy transfer based methods.  相似文献   

10.
In coupling the redox state of an adsorbed molecule to its spectral characteristics redox profiles can be directly imaged by means of far-field fluorescence. At suitable levels of dilution, on optically transparent electrode surfaces, reversible interfacial electron transfer processes can be followed pixel by pixel down to scales which approach the molecular. In mapping out switching potentials across a surface population, thermodynamic dispersion, related to variance in the orientation, electronic coupling, protein fold, electric field drop, and general surface order, can be quantified. The self-assembled monolayer buffering the protein from the underlying metallic electrode surface not only acts to tune electronic coupling between the two but also potentially provides a variable more easily segmented from other contributions to molecular dispersion. We have, specifically, considered the possibility that the supporting monolayer crystallinity is a significant contributor to the subsequently observed spread in half-wave potentials. We report here that this is indeed the case and that this spread diminishes from 17 to 12 mV for the blue copper protein azurin as the supporting alkanethiol layer crystallinity increases. The work herein, then, presents not only a direct determination of submonolayer scale variance in redox character but also a means of tuning this through gross surface and entirely standard chemical means.  相似文献   

11.
Nicotinamide adenine dinucleotide is an important coenzyme involved in the production of ATP, the fuel of energy, in every cell. It alternates between the oxidized form NAD(+) and the reduced form dihydronicotinamide adenine dinucleotide (NADH) and serves as a hydrogen and electron carrier in the cellular respiratory processes. In the present work, the catalytic effect of gold nanoparticles on the oxidization of NADH to NAD(+) was investigated. The addition of gold nanoparticles was found to quench the NADH fluorescence intensities but had no effect on the fluorescence lifetime. This suggested that the fluorescence quenching was not due to coupling with the excited state, but due to changing the ground state of NADH. The intensity of the 340 nm absorption band of NADH was found to decrease while that of the 260 nm band of NAD(+) was found to increase as the concentration of gold nanoparticles increased. This conversion reaction was further supported by nuclear magnetic resonance and mass spectroscopy. The effect of the addition of NADH was found to slightly red shift and increase the intensity of the surface plasmon absorption band of gold nanoparticles at 520 nm. This gives a strong support that the conversion of NADH to NAD(+) is occurring on the surface of the gold nanoparticles, i.e. NADH is surface catalyzed by the gold nanoparticles. The catalytic property of this important reaction might have important future applications in biological and medical fields.  相似文献   

12.
Understanding how the active site structures of blue copper proteins determine their redox properties is the central structure-function relationship question of this important class of protein, also referred to as cupredoxins. We here describe both experimental and computational studies of azurin, plastocyanin and stellacyanin designed to define more accurately the geometric structures of the active site of the reduced and oxidized species, and thus to understand how these structures determine the redox potentials of these proteins. To this end the crystal structure of reduced azurin II has been determined at an atomic resolution of 1.13 Angstrom and is presented here. Co-ordinates and structure factors have been deposited in the RCSB Protein Data Bank with accession codes 2ccw and r2ccwsf respectively. The improved accuracy provided by the atomic resolution for the metal stereochemistry are utilised in conjunction with the EXAFS data for theoretical calculations. Multilevel calculations involving density functional theory and molecular mechanical potentials are used to predict both the geometric and electronic structure of the active sites of azurin, plastocyanin and stellacyanin and to estimate the relative redox potentials of these three proteins. We have also compared the relative energies of the structures obtained from experiment at varying resolutions, and from the isolated and embedded cluster calculations. We find significant energy differences between low and high (atomic) resolution structures arising primarily due to inaccuracies in the Cu-ligand distances in the lower resolution structures, emphasising the importance of accurate, very high resolution structural information. QM/MM structures are only approximately 1 kcal mol(-1) lower in energy than the 1.13 Angstrom structure while the optimized gas phase structure is 13.0 kcal mol(-1) lower in energy.  相似文献   

13.
Three-dimensional porphyrin-monolayer-protected gold clusters with different chain lengths (MPCs) have been prepared to examine the structure and photophysical properties, in comparison with self-assembled monolayers (SAMs) of the porphyrins on a flat gold surface. The three-dimensional porphyrin MPCs exhibit electrochemical and photophysical properties that are much closer to those of a porphyrin reference compound in solution than those of two-dimensional porphyrin SAMs on the flat gold surface. The three-dimensional architectures of porphyrin MPCs with large surface area have improved the light-harvesting efficiency relative to the corresponding porphyrin SAM on the two-dimensional flat gold surface. Time-resolved single photon counting fluorescence and transient absorption spectroscopic studies have demonstrated that undesirable quenching of the porphyrin excited singlet state via energy transfer to the gold surface of the three-dimensional MPCs is much suppressed, as compared to the quenching of the porphyrin SAMs on the two-dimensional flat gold surface. Both the quenching rate constants of the porphyrin excited singlet state by the surfaces of bulk gold and gold nanoclusters reveal weak chain length dependence of the energy transfer quenching.  相似文献   

14.
Ultrafast fluorescence dynamics of FMN binding protein (FBP) from Desulfobivrio vulgaris, strain Miyaxaki F, were compared in solution and crystal phases. Fluorescence lifetimes of FBP were 167 fs (96%) and 1.5 ps (4%) in solution (tau(av) = 220 fs), and 730 fs (60%) and longer than 10 ps (40%) in crystals (tau(av) = 4.44 ps). The quenching of the fluorescence of flavin in the protein was considered to be due to photoinduced electron transfer (ET) from Trp or Tyr to the excited isoalloxazine (Iso) nearby. The average lifetime was 20 times longer in crystal vs in solution. Averaged distances between Iso and nearby Trp-32, Tyr-35, and Trp-106 were 8.42, 7.36, and 8.15 A in solution, respectively (obtained by NMR spectroscopy), and 7.05, 7.72, and 8.49 A in crystal, respectively (obtained by X-ray crystallography). The prolonged lifetime in crystal cannot be elucidated by the change in the distances between the states. It was suggested that the longer lifetime in crystal was ascribed to the absence of water molecules around FBP with rapid motional freedom, which may be the driving force for the ET in flavoproteins.  相似文献   

15.
Conformational heterogeneity of the FAD cofactor in p-hydroxybenzoate hydroxylase (PHBH) was investigated with time-resolved polarized flavin fluorescence. For binary enzyme/substrate (analogue) complexes of wild-type PHBH and Tyr222 mutants, crystallographic studies have revealed two distinct flavin conformations; the ‘in’ conformation with the isoalloxazine ring located in the active site, and the ‘out’ conformation with the isoalloxazine ring disposed towards the protein surface. Fluorescence-lifetime analysis of these complexes revealed similar lifetime distributions for the ‘in’ and ‘out’ conformations. The reason for this is twofold. First, the active site of PHBH contains various potential fluorescence-quenching sites close to the flavin. Fluorescence analysis of uncomplexed PHBH Y222V and Y222A showed that Tyr222 is responsible for picosecond fluorescence quenching free enzyme. In addition, other potential quenching sites, including a tryptophan and two tyrosines involved in substrate binding, are located nearby. Since the shortest distance between these quenching sites and the isoalloxazine ring differs only little on average, these aromatic residues are likely to contribute to fluorescence quenching. Second, the effect of flavin conformation on the fluorescence lifetime distribution is blurred by binding of the aromatic substrates: saturation with aromatic substrates induces highly efficient fluorescence quenching. The flavin conformation is therefore only reflected in the small relative contributions of the longer lifetimes.  相似文献   

16.
We report the self-assembly and electrochemical behaviour of the blue copper protein Pseudomonas aeruginosa azurin on Au(111) electrodes in aqueous acetate buffer (pH=4.6). The formation of monolayers of this protein is substantiated by electrochemical measurements. Capacitance results indicate qualitatively that the protein is strongly adsorbed at sub-μM concentrations in a broad potential range (about 700 mV). This is further supported by the attenuation of a characteristic cyclic voltammetric peak of Au(111) in acetate solution with increasing azurin concentration. Reductive desorption is clearly disclosed in NaOH solution (pH=13), strongly suggesting that azurin is adsorbed via its disulphide group. An anodic peak and a cathodic peak associated with the copper centre of azurin are finally observed in the differential pulse voltammograms. These peaks are, interestingly, indicative of long-range electrochemical electron transfer such as paralleled by intramolecular electron transfer between the disulphide anion radical and the copper atom in homogeneous solution, and anticipated by theoretical frames. Together with reported in situ scanning tunnelling microscopy (STM) results they constitute the first case for electrochemistry of self-assembled monolayers of azurin, even redox proteins. This integrated investigation provides a new approach to both structure and function of adsorbed redox metalloproteins at the molecular level.  相似文献   

17.
Azurins, a wild type and a genetically mutant K27 altered one. were immobilized on annealed gold sur-face and investigated by means of atomic force microscopy. It was found that the surface coverage and height distribution of the adsorbed protein molecules are different from each other, which is possibly the result of the different orientation on the surface. It is believed that the wild type azurin is connected to gold surface by the disulphide bridge;while the mutant, K27C, might be through the thiol groups of the cysteine residues on their surface.  相似文献   

18.
The composite fluorescence emission from the two tryptophans (W7 and W14) of horse heart apomyoglobin was explored by fluorescence quenching experiments. The fluorescence of the W7 residue is the only one involved in the quenching by iodide or trichloroethanol (TCE) titration. The fluorescence contribution of W7 is 49% of the total apomyoglobin emission, and its spectrum is red-shifted compared to the W14 emission. The fluorescence decay of Trp residues gives an average fluorescence lifetime of 2.06 ns for W14 and 2.84 ns for W7. The static fluorescence quenching by TCE was used to monitor the individual motions of the two tryptophans in apomyoglobin. The short correlation time of W7 (rho = 3 ns) explains why this residue can experience various environments without having to assume the existence of several protein conformations occurring during its lifetime emission.  相似文献   

19.
"?Fluorescence spectra of naked gold nanoparticles, triphenylphosphine stabled gold nanoparticles, and 3-mercaptopropionic acid substituted gold nanoparticles were studied. It was found that fluorescence intensities of gold nanoparticles were highly sensitive to surface molecules. The fluorescence quenching effect of these gold nanoparticles on CdSe nanoparticles was also investigated. This quenching effect was related to the overlap degree between the absorption spectra of gold nanoparticles and the emission spectrum of CdSe nanoparticles, and was surface-dependent as well. "  相似文献   

20.
A quartz crystal microbalance coupled with electrochemistry was used to examine the adsorption of azurin on a gold electrode modified with a self-assembled monolayer of octanethiol. Azurin adsorbed irreversibly to form a densely packed monolayer. The rate of azurin adsorption was related to the bulk concentration of azurin in solution within the concentration range studied. At a high azurin concentration (2.75 muM), adsorption was rapid with a stable adsorption maximum attained in 2-3 min. At a lower azurin solution concentration (0.35 muM), the time to reach a stable adsorption maximum was approximately 30 min. Interestingly, the maximum surface concentration attained for all solution concentrations studied by the QCM method was 25 +/- 1 pmol cm-2, close to that predicted for monolayer coverage. The dissipation was monitored during adsorption, and only small changes were detected, implying a rigid adsorption model, as needed when using the Sauerbrey equation. Cyclic voltammetric data were consistent with a one-electron, surface-confined CuII/CuI azurin process with fast electron-transfer kinetics. The electroactive surface concentration calculated using voltammetry was 7 +/- 1 pmol cm-2. The differences between the QCM and voltammetrically determined surface coverage values reflect, predominantly, the different measurement methods but imply that all surface-confined azurin is not electrochemically active on the time scale of cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号