首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A model of interaction between low-lying electronic states of oxygen atoms and a host crystal has been designed to account for luminescence and chemiluminescence processes observed during far UV photolysis of oxygenated precursors in rare-gas matrices. A mechanism that involves different trapping sites (substitution in neon, insertion in argon, krypton and xenon) explains the observed features.  相似文献   

2.
The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d74p 3G5 (6.0201 eV) for krypton and the 3d74p 3G4 (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.  相似文献   

3.
Argon clusters have been doped with krypton atoms in a pick-up setup and investigated by means of ultraviolet and x-ray photoelectron spectroscopy (UPS and XPS). The width of the krypton surface feature in the XPS spectra from mixed krypton/argon clusters has been studied and found to be narrower than in the case of homogeneous krypton clusters. By considering known spectral broadening mechanisms of the cluster features and the electron binding energy shift of the cluster surface feature relative to the atomic signal, we conclude that krypton ad-atoms preferentially occupy high-coordination surface sites on the argon host-cluster.  相似文献   

4.
Porphycene (1) and porphyrin (2), two constitutional isomers, reveal completely different electronic spectral patterns in argon and xenon matrices. For the former the spectra recorded in the two solidified gases resemble each other, whereas for the latter they are completely different. This difference can be rationalized by molecular-dynamics simulations of the structure of the microenvironment carried out for the two chromophores embedded in argon and xenon hosts. For 1, the structure of the main substitutional site is the same for Ar and Xe and consists of a hexagonal cavity obtained by removing seven host atoms from the [111] crystallographic plane. An analogous structure is obtained for 2 in xenon. However, in argon the porphyrin chromophore environment is shared between several different sites, with the number of replaced host atoms ranging from seven to ten. These results demonstrate that a relatively minor structural alternation may lead to major changes in the spectral pattern of molecules embedded in rare-gas cryogenic matrices.  相似文献   

5.
Electronic absorption spectra of 2,7,12,17-tetra-tert-butylporphycene (TTPC) have been recorded in low-temperature argon and xenon matrices for various deposition conditions. In the region of the S(0)-S(1) electronic transition, the spectra of TTPC in argon reveal a rich site structure, characterized by a series of more than 30 absorption peaks. Studies of the temperature dependence of the electronic spectra in solid argon demonstrated remarkable spectral changes, resulting in the broadening of all bands with increasing temperature. These temperature-induced spectral changes are, to a large degree, reversible, so lowering of temperature is accompanied by the recovery of the original fine-line spectrum. The absorption spectra in xenon reveal broad bands, on which a rich pattern of lines becomes superimposed at low temperatures. Trapping site distribution and the structure of the microenvironment around the TTPC chromophore, embedded in argon and xenon hosts, have been analyzed using molecular dynamics (MD) simulations. The MD results show that the trapping of TTPC in rare-gas solids is influenced by favorable embedding of the bulky tert-butyl groups inside the matrix cage. The crucial role of the tert-butyl groups for the thermodynamics and kinetics of matrix deposition is demonstrated by comparing the results with those obtained for the parent, unsubstituted porphycene.  相似文献   

6.
Vacuum ultraviolet photoabsorption spectra of CH3I 6s and 6s′ Rydberg states doped into supercritical argon, krypton, and xenon perturbers were measured from low density to the density of the triple point liquid at noncritical temperatures and on an isotherm near the perturber critical temperature. A full line shape analysis of these spectra was performed using a single set of intermolecular potential parameters for each dopant/perturber system. The resulting perturber induced shift of the simulated adiabatic transition of the 6s and 6s′ Rydberg states is presented as a function of perturber number density, and this shift illustrates a perturber critical point effect on the excitation energies of the molecular low-n Rydberg states.  相似文献   

7.
The infrared absorption spectra of the water molecules and small water clusters, (H(2)O)(n) with n = 2-6, trapped in solid argon, krypton, and xenon matrices have been investigated. The infrared bands of the water clusters with n = 5 and 6 in krypton and n = 3, 4, 5, and 6 in xenon matrices have been identified for the first time in the bonded OH stretching region. The frequency shifts in the bonded OH stretching band of the water dimer and trimer in xenon matrices show fairly large deviations to the red from the empirical correlation between the matrix shifts and the square root of the critical temperatures of the matrix material. The observed anomalous shifts suggest that the water dimer and trimer in solid xenon are trapped in multiple sites, and that the structures of the preferential trapping sites are different from those in argon and krypton matrices.  相似文献   

8.
Vacuum ultraviolet absorption spectra of lead, indium and barium atoms trapped in solid rare gases are shown. These spectra were obtained photoelectrically and the matrix gases used were argon, krypton and xenon. The results are discussed in relation to previous work.  相似文献   

9.
The spatial distribution analysis of emission signals from a laser-induced plasma can provide information on the excitation mechanism as well as on the optimization of the analytical conditions when it is employed as a sampling and excitation source in optical emission spectrometry. A two-dimensionally imaging spectrometer system was employed to measure spatial variations in the emission intensities of a copper sample and plasma gases when krypton, argon, or helium was employed under various pressure conditions. The emission image of the Cu I 324.75-nm line consists of a breakdown spot and a plasma plume, where the breakdown zone expands toward the surrounding gas. The shape and the intensities of the plasma plume are strongly dependent on the kind and pressure of the plasma gas, while those of the breakdown zone are less influenced by these experimental parameters. This effect can be explained by the difference in the cross-section of collisions between krypton, argon, and helium. The signal-to-background ratio of the Cu I 324.75-nm line was estimated over two-dimensional images to determine the optimum position for analytical applications.  相似文献   

10.
The emission characteristics of nickel ionic lines in low-pressure laser-induced plasmas are investigated when argon, krypton, nitrogen, or air gas was employed as the plasma gas. The spectrum patterns and the relative intensities of the ionic lines are measured with and without a blind cylinder surrounding the sample surface to separate the detected emission area into two portions roughly: an initial breakdown zone and an expansion zone of the plasma. Their emission intensities are strongly dependent on both the kind and the pressure of the plasma gas. Different major ionic lines are observed in the argon and the krypton plasmas: for example, the Ni II 230.010-nm line (8.25 eV) for argon and the Ni II 231.604-nm line (6.39 eV) for krypton. The excitation mechanism of these ionic lines is considered to be a resonance charge-transfer collision with argon or krypton ion due to good energy matching to the corresponding energy levels of nickel ion. These ionic lines measured with the blind cylinder at reduced pressures of around 1300 Pa give the largest signal-to-background ratios; therefore, the analytical application under such optimum plasma conditions is recommended.  相似文献   

11.
《Chemical physics letters》1987,139(2):171-174
Excitation spectra of the total emission intensity of NO doped into solid and liquid argon and krypton are reported. The emission intensity decreases as the temperature of the triple point is approached and disappears during the solid-liquid transition. The quenching efficiency is explained in terms of the diffusion of the long-lived a 4Π valence state and its subsequent quenching, most probably, by a ground-state NO molecule. These results are exploited for a determination of the activation energy for the diffusion of the excited molecule in solid argon in the temperature range 67 <T< 83 K.  相似文献   

12.
David Smith 《Chemical physics》1997,220(3):279-287
The tunneling frequencies of CH4 and CD4 embedded in rare-gas solids are computed using a Hamiltonian of symmetry. The distance between the carbon atom of a CH4 molecule and the nearest-neighbor rare-gas atoms is taken as an empirical parameter and determined by matching the computed and observed J = 0 to J = 1 tunneling frequency. Using this distance, the tunneling frequencies of CH3D embedded in argon and krypton, and CH2D2, CHD3, and CD4 embedded in solid argon are computed. A comparison of the observed and computed tunneling frequencies of these isotopic forms of methane provides evidence of the symmetry of the potential function that should be used for symmetric and asymmetric tops in crystalline fields of cubic symmetry.  相似文献   

13.
The caging effect of the host environment on photochemical reactions of molecular oxygen is investigated using monochromatic synchrotron radiation and spectrally resolved fluorescence. Oxygen doped clusters are formed by coexpansion of argon and oxygen, by pickup of molecular oxygen or by multiple pickup of argon and oxygen by neon clusters. Sequential pickup provides radially ordered core-shell structures in which a central oxygen molecule is surrounded by argon layers of variable thickness inside large neon clusters. Pure argon and core-shell argon-neon clusters excited with approximately 12 eV monochromatic synchrotron radiation show strong fluorescence in the vacuum ultraviolet (vuv) spectral range. When the clusters are doped with O2, fluorescence in the visible (vis) spectral range is observed and the vuv radiation is found to be quenched. Energy-resolved vis fluorescence spectra show the 2 1Sigma+-->1 1Sigma+(ArO(1S)-->ArO(1D)) transition from argon oxide as well as the vibrational progression A '3Delta u(nu'=0)-->X 3Sigmag*(nu") of O2 indicating that molecular oxygen dissociates and occasionally recombines depending on the experimental conditions. Both the emission from ArO and O2 as well the vuv quenching by oxygen are found to depend on the excitation energy, providing evidence that the energy transfer from the photoexcited cluster to the embedded oxygen proceeds via the O2+ ground state. The O2+ decays via dissociative recombination and either reacts with Ar resulting in electronically excited ArO or it recombines to O2 within the Ar cage. Variation of the Ar layer thickness in O2-Ar-Ne core-shell clusters shows that a stable cage is formed by two solvation layers.  相似文献   

14.
The formation of C-H···N bonded complexes of halothane with ammonia has been studied using infrared and Raman spectroscopy of solutions in the liquid rare gases argon, krypton and xenon, of supersonic jet expansions and of room temperature vapor phase mixtures. For the solutions and for the vapor phase experiments, the formation of complexes with 1:1 and 1:2 stoichiometry was observed. The complexation enthalpy for the 1:1 complex was determined to be -20 (1) kJ mol(-1) in the vapor phase, -17.0 (5) kJ mol(-1) in liquid xenon and -17.3 (6) kJ mol(-1) in liquid krypton. For the 1:2 complex in liquid xenon, the complexation enthalpy was determined to be -31.5 (12) kJ mol(-1). Using the complexation enthalpies for the vapor phase and for the solutions in liquid xenon and krypton, a critical assessment is made of the Monte Carlo Free Energy Perturbation approach to model solvent influences on the thermodynamical properties of the cryosolutions. The influences of temperature and solvent on the complexation shifts of the halothane C-H stretching mode are discussed.  相似文献   

15.
The emission characteristics of nickel ionic lines in a glow discharge plasma are investigated when argon or krypton was employed as the plasma gas. Large difference in the relative intensities of nickel ionic lines which are assigned to the 3d84p–3d84s transition is observed between the krypton plasma and the argon plasma. Different intense Ni II lines appear in the krypton spectrum and in the argon spectrum, such as the Ni II 231.601 nm for Kr and the Ni II 230.009 nm for Ar. The excitation energy of these Ni II emission lines can give a key in considering their excitation mechanisms. The explanation for these experimental results is that charge-transfer collisions between nickel atom and the plasma gas ion play a major role in exciting the 3d84p excited levels of nickel ion. The conditions for energy resonance in the charge-transfer collision determine particular energy levels having much larger population; for example, the 3d84p 4D7/2 level (6.39 eV) for Kr and the 3d84p 4P5/2 level (8.25 eV) for Ar.  相似文献   

16.
Heavy gases (xenon, argon, krypton, methane) have been used to improve the performance of the quadrupole ion trap when performing collision-induced dissociation on peptides. MS/MS spectra reveal that increased amounts of internal energy can be deposited into peptide ions and more structural information can be obtained. Specifically, the pulsed introduction of the heavy gases (as reported previously by Doroshenko, V. M.; Cotter, R. J.Anal. Chem. 1996, 68, 463) provides greater energy deposition without the deleterious effects that static pressures of heavy gas have on spectra. Internal energy deposition as indicated by a qualitative evaluation of MS/MS spectra shows pulsed introduction of heavy gases enables ions to obtain more internal energy than possible by using static pressures of the same heavy gases. A linear correlation is observed between the percentage of heavy gas added and the ratio of product ions used to reflect internal energy deposition. Results here also show that upon pulsed introduction of heavy gases, empirical optimization of a single frequency resonant excitation signal is no longer needed to obtain good MS/MS spectrometry efficiency. The presence of many low mass-to-charge ratio ions and the absence of side chain cleavages in the MS/MS spectra of peptides suggests that the propensity for consecutive fragmentations is increased with the pulsed introduction of heavy gases. In addition, by varying the delay time between introduction of the gas and application of the resonant excitation signal, the amount of fragmentation observed in MS/MS spectra can be changed.  相似文献   

17.
Experimental studies of a 10-cm Duopigatron as a source of argon, krypton, and xenon ion beams are reported. Source plasma instabilities are examined, and the mass dependence of oscillation frequencies and instability onset conditions are determined. Arc current and density oscillations are found to be associated with ion acoustic fluctuations with frequencies scaling as 1/M1/2. Langmuir probe measurements within the source plasma double layer are used to indicate the physical mechanism responsible for the observed large-amplitude are current shifts. Ion beams have been extracted at energies up to 18 kV, and drain currents up to 540 mA for argon, 440 mA for krypton, and 520 mA for xenon have been achieved with source plasma densities in the range 1011–1012 cm–3. Excellent agreement with existing theoretical models has been obtained in the mass and density dependence of the extraction current, as well as the voltage at which transition from space-charge limited to ion saturation emission occurs.  相似文献   

18.
Photobleaching kinetics of aminolevulinic acid-induced protoporphyrin IX (PpIX) were measured in the normal skin of rats in vivo using a technique in which fluorescence spectra were corrected for the effects of tissue optical properties in the emission spectral window through division by reflectance spectra acquired in the same geometry and wavelength interval and for changes in excitation wavelength optical properties using diffuse reflectance measured at the excitation wavelength. Loss of PpIX fluorescence was monitored during photodynamic therapy (PDT) performed using 514 nm irradiation. Bleaching in response to irradiances of 1, 5 and 100 mW cm-2 was evaluated. The results demonstrate an irradiance dependence to the rate of photobleaching vs irradiation fluence, with the lowest irradiance leading to the most efficient loss of fluorescence. The kinetics for the accumulation of the primary fluorescent photoproduct of PpIX also exhibit an irradiance dependence, with greater peak accumulation at higher irradiance. These findings are consistent with a predominantly oxygen-dependent photobleaching reaction mechanism in vivo, and they provide spectroscopic evidence that PDT delivered at low irradiance deposits greater photodynamic dose for a given irradiation fluence. We also observed an irradiance dependence to the appearance of a fluorescence emission peak near 620 nm, consistent with accumulation of uroporphyrin/coproporphyrin in response to mitochondrial damage.  相似文献   

19.
In situ scanning tunneling microscopy is used to measure the effect of hyperthermal rare-gas bombardment on octanethiol self-assembled monolayers. Close-packed monolayers remain largely unchanged, even after repeated collisions with 0.4 eV argon and 1.3 eV xenon atoms. In contrast, gas-surface collisions do induce structural changes in the octanethiol film near defects, domain boundaries, and disordered regions, with relatively larger changes observed for xenon-atom bombardment.  相似文献   

20.
解文杰  徐鑫 《无机化学学报》2011,27(9):1738-1742
通过固相反应制备了系列Ca掺杂的Ba2Al2Si10N14O4∶Eu2+绿色荧光粉,发现当半径较大的Ba被Ca取代后导致了晶格的收缩,通过X射线衍射(XRD)测量和Unitcell软件计算发现Ca的最大掺杂量在20%。Ca掺入Eu0.4Ba1.6Al2Si10N14O4荧光粉后,可有效地提高光转换性能,并使激发光谱发生一定程度的红移和宽化,从而被近紫外宽波段光有效激发,与近紫外LED的发射光谱匹配。同时Ca的掺杂也使发射光谱发生了可控的红移,可以由520 nm的绿光红移至548 nm的黄光区域。进一步发现Eu2+的淬灭浓度随着20%Ca的掺入而降低,这是由于Ca掺入导致的晶格收缩使Eu2+离子间距离减小。最后在CIE色度图中对不同Ca,Eu浓度的荧光粉的色坐标位置进行比较,发现可通过Ca,Eu浓度的变化在很大范围内调制荧光粉的发光性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号