首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 384 毫秒
1.
This tutorial review surveys recent developments in the chemistry of naphthalene diimides (NDIs) and explores their application in the fields of material and supramolecular science. It begins with a discussion of their general uses, methods of syntheses and their electronic and spectroscopic properties. Of interest to their application in the fields of conducting thin films and molecular sensors is the structure-function relationships that exist either as co-components of supramolecular ensembles as in the case of "nanotubes", or as the sole components in molecular wires. Also discussed are advances in NDI research within the areas of energy and electron transfer (covalent and non-covalent systems) and in host-guest chemistry including foldamer, mechanically-interlocked and ligand-gated ion channel examples. Finally, we explore the developments in the recent field of core-substituted NDIs, their photophysical properties and applications in artificial photosynthesis. We conclude with our views on the prospects of NDIs for future research endeavours.  相似文献   

2.
Supramolecular radical chemistry has been emerging as a cutting-edge interdisciplinary field of traditional supramolecular chemistry and radical chemistry in recent years. The purpose of such a fundamental research field is to combine traditional supramolecular chemistry and radical chemistry together, and take the benefit of both to eventually create new molecules and materials. Recently, supramolecular radical cages have been becoming one of the most frontier and challenging research focuses in the field of supramolecular chemistry. In this Perspective, we give a brief introduction to organic radical chemistry, supramolecular chemistry, and the emerging supramolecular radical chemistry along with their history and application. Subsequently, we turn to the main part of this topic: supramolecular radical cages. The design and synthesis of supramolecular cages consisting of redox-active building blocks and radical centres are summarized. The host–guest interactions between supramolecular (radical) cages and organic radicals are also surveyed. Some interesting properties and applications of supramolecular radical cages such as their unique spin–spin interactions and intriguing confinement effects in radical-mediated/catalyzed reactions are comprehensively discussed and highlighted in the main text. The purpose of this Perspective is to help students and researchers understand the development of supramolecular radical cages, and potentially to stimulate innovation and creativity and infuse new energy into the fields of traditional supramolecular chemistry and radical chemistry as well as supramolecular radical chemistry.

This Perspective summarizes the recent developments of supramolecular radical cages including the design and synthesis of radical cages, their interesting host–guest spin–spin interactions and applications in radical-mediated/catalyzed reactions.  相似文献   

3.
The very concept of dye and pigment chemistry that was long known to the industrial world underwent a radical revision after the discovery and commercialization of dyes such as mauveine, indigo, and so on. Apart from their conventional role as coloring agents, organic dyes, and pigments have been identified as indispensable sources for high-end technological applications including optical and electronic devices. Simultaneous with the advancement in the supramolecular chemistry of π-conjugated systems and the divergent evolution of organic semiconductor materials, several dyes, and pigments have emerged as potential candidates for contemporary optoelectronic devices. Of all the major pigments, diketopyrrolopyrrole (DPP) better known as the ‘Ferrari Pigment’ and its derivatives have emerged as a major class of organic functional dyes that find varied applications in fields such as industrial pigments, organic solar cells, organic field–effect transistors, and in bioimaging. Since its discovery in 1974 by Farnum and Mehta, DPP-derived dyes gained rapid attention because of its attractive color, synthetic feasibility, ease of functionalization, and tunable optical and electronic properties. The advancement in supramolecular polymerization of DPP-based small molecules and oligomers with directed morphological and electronic features have led to the development of high performing optoelectronic devices. In this review, we highlight the recent developments in the optoelectronic applications of DPP derivatives specifically engineered to form supramolecular polymers.  相似文献   

4.
As a consequence of the self‐assembly of small organic molecules in water, supramolecular hydrogels are evolving from serendipitous events during organic synthesis to become a new type of materials that hold promise for applications in biomedicine. In this Focus Review, we describe recent advances in the use of basic biological building blocks for creating molecules that act as hydrogelators and the potential applications of the corresponding hydrogels. After introducing the concept of supramolecular hydrogels and defining the scope of this review, we briefly describe the methods for making and characterizing supramolecular hydrogels. We then discuss representative hydrogelators according to the categories of their building blocks, such as amino acids, nucleobases, and saccharides, and highlight the applications of the hydrogels when necessary. Finally, we offer our perspective and outlook on this fast‐growing field at the interface of organic chemistry, materials, biology, and medicine. By providing a snapshot for chemists, engineers, and medical scientists, we hope that this Focus Review will contribute to the development of multidisciplinary research on supramolecular hydrogels for a wide range of applications in different fields.  相似文献   

5.
DNA-templated self-assembly represents a rich and growing subset of supramolecular chemistry where functional self-assemblies are programmed in a versatile manner using nucleic acids as readily-available and readily-tunable templates. In this review, we summarize the different DNA recognition modes and the basic supramolecular interactions at play in this context. We discuss the recent results that report the DNA-templated self-assembly of small molecules into complex yet precise nanoarrays, going from 1D to 3D architectures. Finally, we show their emerging functions as photonic/electronic nanowires, sensors, gene delivery vectors, and supramolecular catalysts, and their growing applications in a wide range of area from materials to biological sciences.  相似文献   

6.
Introduction In recent years, considerable attention has been paid to supramolecular networks based on metal organic building blocks because of their potential applications in diverse fields, such as, catalysis, optics, sensors,magnetism, and molecular recognition[1-3]. On the basis of the principles of crystal engineering and special synthesis strategies, several novel supramolecular frameworks have been assembled from various organic,inorganic and metal-organic moieties, which largely enriches the structure chemistry of solid state materials[4-9].  相似文献   

7.
Luminescent metallo‐supramolecular polymers are a type of functional supramolecular architectures which integrates the advantages of emission, metal‐coordination, supramolecular chemistry as well as polymeric properties to realize advanced functions. Due to the abundant stimuli‐responsiveness of supramolecular assemblies and the light‐emitting properties, they have been widely applied as chemo‐sensors, light‐emitting devices, contrast agents for bio‐imaging, etc. In this review, we classify luminescent metallo‐supramolecular polymers based on the types of species (lanthanides, organometallic compounds, oligomer or polymer‐based ligands, small‐molecule‐based organic ligands) used to generate the luminescence and summarize recent developments of luminescent metallo‐supramolecular polymers. We mainly focus on the functions and applications of luminescent metallo‐supramolecular polymers and hope to give our reader a snapshot of research on luminescent metallo‐supramolecular polymers and encourage more scientists to devote into this promising area.  相似文献   

8.
Sigma–hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma–hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host–guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.

Sigma–hole mediated detection of anions is rapidly emerging as a new paradigm in supramolecular sensor chemistry. Herein, we provide an overview of this field including halogen bonding and chalcogen bonding optical, electrochemical and other sensors.  相似文献   

9.
在常压下, 以溴化钠和发烟硫酸(含质量分数为40%的SO3)为溴化试剂, 通过控制反应温度、 反应时间和溴化钠的投料比选择性地合成了2-溴-1,4,5,8-萘四甲酸酐和2,6-二溴-1,4,5,8-萘四甲酸酐. 本研究提供了一种合成溴代1,4,5,8-萘四甲酸酐衍生物的新方法.  相似文献   

10.
《中国化学快报》2023,34(8):108124
The design and synthesis of photoactive macrocyclic molecules continue to attract attention because such species play important roles in supramolecular chemistry as well as photoelectronic applications. Donor-acceptor (D-A) conjugated macrocycles are an emerging class of photoactive molecules due to their D-A conjugated structural characteristics and tunable optical properties. In addition, the well-defined cavities in such D-A macrocycles endow them with versatile host-guest properties. In this review, we provide a comprehensive summary of D-A conjugated macrocycle chemistry, detailing recent progress in the area of synthetic methods, optical properties, host-guest chemistry and applications of the underlying chemistry to chemical sensors, bioimaging and photoelectronic devices. Our objective is to provide not only a review of the fundamental findings, but also to outline future research directions where D-A conjugated macrocycles and their constructs may have a role to play.  相似文献   

11.
J-aggregates are of significant interest for organic materials conceived by supramolecular approaches. Their discovery in the 1930s represents one of the most important milestones in dye chemistry as well as the germination of supramolecular chemistry. The intriguing optical properties of J-aggregates (in particular, very narrow red-shifted absorption bands with respect to those of the monomer and their ability to delocalize and migrate excitons) as well as their prospect for applications have motivated scientists to become involved in this field, and numerous contributions have been published. This Review provides an overview on the J-aggregates of a broad variety of dyes (including cyanines, porphyrins, phthalocyanines, and perylene bisimides) created by using supramolecular construction principles, and discusses their optical and photophysical properties as well as their potential applications. Thus, this Review is intended to be of interest to the supramolecular, photochemistry, and materials science communities.  相似文献   

12.
分子识别是超分子化学的核心概念,荧光开关PET(photoinduced electron transfer)体系又是分子识别中的重要组成部分,是超分子化学与光化学学科相结合的成就.荧光开关作为一种全新的客体识别和分析手段,由于其独特的应用价值,近10年来正以惊人的速度在向前发展.  相似文献   

13.
分子识别中质子客体的荧光传感和开关研究进展   总被引:2,自引:0,他引:2  
徐凤波  陆猗 《化学研究》2000,11(2):50-57,64
分子识别是超分子化学的核心概念 ,而荧光开关PET体系又是分子识别中的重要组成部分 ,是超分子化学和光物理学科相结合的成就 ,作为一种全新的客体识别分析手段由于其独特的应用价值 ,近十年以惊人的速度在向前发展。本文综合 1 998年以前的文献对质子客体的荧光开关PET体系进行了全面介绍。  相似文献   

14.
The tandem Claisen rearrangement is a simple but highly efficient reaction to synthesize useful building blocks for supramolecular chemistry. It provides in one step two new C-C bonds in very high yield. The scope and limits of this reaction will be discussed in this review and it will be shown, how macrocyclic compounds as well as rotaxanes or helicates can be formed by use of butenylidene bridged aromatic compounds obtained after the rearrangement reaction. Special aspects will cover the search for new receptors and sensors or for energy transfer properties. The contents of this tutorial review are within the field of preparative organic synthesis but in addition cover aspects of inorganic and supramolecular chemistry.  相似文献   

15.
Lead‐free perovskite structures have been recently attracting considerable attention because of their eco‐friendly nature and properties, such as their lead‐based structure. In this work, we reviewed the lead‐free double perovskite (LFDP) structure because of its unique electronic dimensions, chemical stability, and substitutional chemistry compared with other lead‐free structures. We highlighted the recent progress on crystal structure prediction, synthesis methods, metal dopants, and ligand passivation on LFDPs. LFDPs are useful for several applications, such as solar cells, light‐emitting diodes, degradation of photocatalytic dyes, sensors, and X‐ray detectors. This report provides a summary of recent progress as a reference for further research on lead‐free perovskite structures.  相似文献   

16.
17.
有机膦大环化合物是伴随着大环化学的出现而发展起来的.它们不仅具有多变的结构而且非常稳定;不仅能够包结客体分子,还可以与许多过渡金属形成稳定的配位化合物,在主客体化学以及金属有机催化领域中受到人们的广泛关注.由于其独特的性质,有机膦大环化合物在超分子化学的发展中具有重要的地位.本文主要介绍了近些年有机膦大环化合物研究的新进展及其在超分子化学中的应用.  相似文献   

18.
Introduction In recent years,considerable attention has been paid to supramolecular networks based on metal organic building blocks because of their potential applications in diverse fields,such as,catalysis,optics,sensors, magnetism,and molecular recognition[1-3].On the ba-  相似文献   

19.
Nature's use of a simple genetic code to enable life's complex functions is an inspiration for supramolecular chemistry. DNA nucleobases carry the key information utilizing a variety of cooperative and non-covalent interactions such as hydrophobic, van der Waals, pi-pi stacking, ion-dipole and hydrogen bonding. This tutorial review describes some recent advances in the form and function provided by self-assembly of guanine (G) based systems. We attempt to make connections between the structures of the assemblies and their properties. The review begins with a brief historical context of G self-assembly in water and then describes studies on lipophilic guanosine analogs in organic solvents. The article also focuses on examples of how G analogs have been used as building blocks for functional applications in supramolecular chemistry, material science and nanotechnology.  相似文献   

20.
We describe the field of supramolecular chemistry as a consequence of the progress of chemistry from its premises to recent achievements. Supramolecular chemistry has been claimed to be an emergent field of research taking its roots in chemistry. According to the definitions of emergences related to hierarchy or more recently to scope, supramolecular chemistry is shown to have bottom-up or top-down emergences. The bottom-up emergence, directly related to hierarchy by definition, opens up the world of nanochemistry and nanomaterials while the top-down one, attributable to scope due to the implication of supramolecular chemistry in other fields of research, open the world of supramolecular biochemistry. Both emergences lead supramolecular chemistry to become a supramolecular science. Combining supramolecular chemistry with biology opens new direction in the study of life and it origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号