首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of minimizing the functional (A) $${}_a\smallint ^b \varphi (x,y,y',y'')dx$$ under the conditions (B) $$y(a) = a_0 ,y'(a) = a_1 ,y(b) = b_0 ,y'(b) = b_1$$ is replaced by the problem of finding the vector (y1,y2,...,yn?1) on which the sum (C) $$\sum\limits_{\kappa = 0}^n {C_\kappa \varphi (x_\kappa ,y_\kappa ,\left. {\frac{{y_{\kappa + 1} - y_\kappa }}{h},\frac{{y_{\kappa + 1} - 2y_\kappa + y_{\kappa + 1} )}}{{h^2 }}} \right)}$$ takes a minimal value. Under certain conditions on ? andC k it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.  相似文献   

2.
In this article,we consider the following nonlinear Sturm-Liouville problem(?)and prove the existence of the eigenvalue and the eigenfunction by using Schauder's fixed opinttheorem.This problem arises from finding the solutions of solitons and stationary states of thenonlinear Schr(?)dinger equation (NLS Eq.) with external fields.Using the result obtained,we provethe existence of solitons and stationary states of the NLS equation for the oscillater.  相似文献   

3.
BOUNDARYVALUEPROBLEMSOFSINGULARLYPERTURBEDINTEGRO-DIFFERENTIALEQUATIONSZHOUQINDEMIAOSHUMEI(DepartmentofMathematics,JilinUnive...  相似文献   

4.
We develop the method of lower and upper solutions for the fourth-order differential equation which models the stationary states of the deflection of an elastic beam, whose both ends simply supported
$$\begin{aligned}&y^{(4)}(x)+(k_1+k_2) y''(x)+k_1k_2 y(x)=f(x,y(x)), \ \ \ \ x\in (0,1),\\&y(0) = y(1) = y''(0) = y''(1) = 0\\ \end{aligned}$$
under the condition \(0<k_1<k_2<x_1^2\approx 4.11585\), where \(x_1\) is the first positive solution of the equation \(x\cos (x)+\sin (x)=0\). The main tools are Schauder fixed point theorem and the Elias inequality.
  相似文献   

5.
In this paper we establish existence of solutions of singular boundary value problem ?(p(x)y (x))=q(x)f(x,y,py′) for 0<xb and $\lim_{x\rightarrow0^{+}}p(x)y^{\prime}(x)=0$ , α 1 y(b)+β 1 p(b)y (b)=γ 1 with p(0)=0 and q(x) is allowed to have integrable discontinuity at x=0. So the problem may be doubly singular. Here we consider $\lim_{x\rightarrow0^{+}}\frac{q(x)}{p'(x)}\neq0$ therefore $\lim_{x\rightarrow0^{+}}p(x)y'(x)=0$ does not imply y′(0)=0 unless $\lim_{x\rightarrow0^{+}}f(x,y(x),p(x)y'(x))=0$ .  相似文献   

6.
We prove the following inequalities involving Euler’s beta function. (i) Let α and β be real numbers. The inequalities $\left( {\frac{{y^{z - x} }} {{x^{z - y} z^{y - x} }}} \right)^\alpha \leqslant \frac{{B(x,x)^{z - y} B(z,z)^{y - x} }} {{B(y,y)^{z - x} }} \leqslant \left( {\frac{{y^{z - x} }} {{x^{z - y} z^{y - x} }}} \right)^\beta $ hold for all x, y, z with 0 < xyz if and only if α ≤ 1/2 and β ≥ 1. (ii) Let a and b be non-negative real numbers. For all positive real numbers x and y we have $\delta (a,b) \leqslant \frac{{x^a B(x + b,y) + y^a B(x,y + b)}} {{(x + y)^a B(x,y)}} \leqslant \Delta (a,b) $ with the best possible bounds $\delta (a,b) = \min \{ 2^{ - a} ,2^{1 - a - b} \} and\Delta (a,b) = \max \{ 1,2^{1 - a - b} \} . $ .  相似文献   

7.
We prove that the operator ${Tf(x,y)=\int^\pi_{-\pi}\int_{|x^{\prime}|<|y^{\prime}|} \frac{e^{iN(x,y) x^{\prime}}}{x^{\prime}}\frac{e^{iN(x,y) y^{\prime}}}{y^{\prime}}f(x-x^{\prime}, y-y^{\prime}) dx^{\prime} dy^{\prime}}$ , with ${x,y \in[0,2\pi]}$ and where the cut off ${|x^{\prime}|<|y^{\prime}|}$ is performed in a smooth and dyadic way, is bounded from L 2 to weak- ${L^{2-\epsilon}}$ , any ${\epsilon > 0 }$ , under the basic assumption that the real-valued measurable function N(x, y) is “mainly” a function of y and the additional assumption that N(x, y) is non-decreasing in x, for every y fixed. This is an extension to 2D of C. Fefferman’s proof of a.e. convergence of Fourier series of L 2 functions.  相似文献   

8.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

9.
Let $h(t,x): = p.v. \sum\limits_{n \in Z\backslash \left| 0 \right|} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} = \mathop {\lim }\limits_{N \to \infty } \sum\limits_{0< \left| n \right| \leqslant N} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} $ ( $(i = \sqrt { - 1;} t,x$ -real variables). It is proved that in the rectangle $D: = \left\{ {(t,x):0< t< 1,\left| x \right| \leqslant \frac{1}{2}} \right\}$ , the function h satisfies the followingfunctional inequality: $\left| {h(t,x)} \right| \leqslant \sqrt t \left| {h\left( {\frac{1}{t},\frac{x}{t}} \right)} \right| + c,$ where c is an absolute positive constant. Iterations of this relation provide another, more elementary, proof of the known global boundedness result $\left\| {h; L^\infty (E^2 )} \right\| : = ess sup \left| {h(t,x)} \right|< \infty .$ The above functional inequality is derived from a general duality relation, of theta-function type, for solutions of the Cauchy initial value problem for Schrödinger equation of a free particle. Variation and complexity of solutions of Schrödinger equation are discussed.  相似文献   

10.
Integral operators of the type $$(Tf)(x) = \int_0^1 {\frac{{x^\beta y^\gamma }}{{(x + y)^\alpha }}} f(y)dy,$$ the kernels of which have a singularity at a single point, are discussed. H. Widom's method and some of his results are used to show that, if α>0, β, γ>?1/2, ρ=β+γ?α+1>0, then we have for the distribution function of the singular numbers of the operator, $$\mathop {\lim }\limits_{\varepsilon \to 0} N(\varepsilon ,T)ln^{ - 2} {\textstyle{1 \over \varepsilon }} = {\textstyle{1 \over {2\pi ^2 \varepsilon }}}.$$   相似文献   

11.
We consider the weighted space W 1 (2) (?,q) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here f ε L 1(?) and 0 ? qL 1 loc (?). We prove the following:
  1. The problems of embedding W 1 (2) (?q) ? L 1(?) and of correct solvability of (1) in L 1(?) are equivalent
  2. an embedding W 1 (2) (?,q) ? L 1(?) exists if and only if $$\exists a > 0:\mathop {\inf }\limits_{x \in R} \int_{x - a}^{x + a} {q(t)dt > 0} $$
  相似文献   

12.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

13.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

14.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

15.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

16.
We consider the scalar homogeneous equation $S(x) = \int_0^\infty {K(x - t)S(t)dt,{\text{ }}x \in \mathbb{R}^ + \equiv (0,\infty ),}$ with symmetric kernel $K:K( - x) = K(x),{\text{ }}x \in \mathbb{R}_1$ satisfying the conditions $0 \leqslant K \in L_1 (\mathbb{R}^ + ) \cap C^{\left( 2 \right)} (\mathbb{R}^ + )$ , $\int_0^\infty {K(t)dt > \frac{1}{2}} $ , $K' \leqslant 0{\text{ }}and 0 \leqslant K'' \downarrow {\text{ }}on \mathbb{R}^ + $ . We prove the existence of a real solution S of the equation given above with asymptotic behavior $S(x) = O(x){\text{ as }}x \to + \infty $ .  相似文献   

17.
We introduce in a U. F. D.,A, and in its quotient fieldK two metricsd and \(\bar d\) connected to the (p)-adic topology onA and its extension toK; we prove that: \(\bar d\left( {\frac{x}{y},\frac{{x'}}{{y'}}} \right) = \inf \left( {\frac{{d(xy',yx')}}{{2d(yy',0)}},1} \right)\) .  相似文献   

18.
Рассматривается воп рос о представлении о ператора Гильберта и сопряжен ной функцииA-интегралом. Доказывается следую щая Теорема. Если ? - такая неотрицательная фун кция на [0, ∞), что х?1?(х) монотонно не убывает на (0, ∞) и для н екоторого Н> 0 \(\mathop \smallint \limits_H^\infty \varphi ^{ - 1} (x)dx< \infty\) , а определенная на R функ ция fε?∩?(?), то почти всюду оператор Гильберта $$\tilde f(x) = - \frac{1}{\pi }(A)\mathop \smallint \limits_0^\infty \frac{{f(x + t) - f(x - t)}}{t}dt$$ . Из данной теоремы сле дует, что для функций и з ?p, 1<р<#x221E;, оператор Гильберта и сопряженная функция представляютсяA-инте гралом. Что для функций из ?1 п одобное утверждение неверно, показывает следующа я теорема. Теорема.Существует т акая суммируемая на R ф ункция f≧0, что почти всюду $$\mathop {\lim sup}\limits_{n \to \infty } \mathop \smallint \limits_0^\infty \left[ {\frac{{f(x + t) - f(x - t)}}{t}} \right]_n dt = \infty$$ .  相似文献   

19.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

20.
In this paper we will study the stability properties of self-similar solutions of $1$ D cubic NLS equations with time-dependent coefficients of the form 0.1 $$\begin{aligned} \displaystyle { iu_t+u_{xx}+\frac{u}{2} \left(|u|^2-\frac{A}{t}\right)=0, \quad A\in \mathbb{R }. } \end{aligned}$$ The study of the stability of these self-similar solutions is related, through the Hasimoto transformation, to the stability of some singular vortex dynamics in the setting of the Localized Induction Equation (LIE), an equation modeling the self-induced motion of vortex filaments in ideal fluids and superfluids. We follow the approach used by Banica and Vega that is based on the so-called pseudo-conformal transformation, which reduces the problem to the construction of modified wave operators for solutions of the equation $$\begin{aligned} iv_t+ v_{xx} +\frac{v}{2t}(|v|^2-A)=0. \end{aligned}$$ As a by-product of our results we prove that Eq. (0.1) is well-posed in appropriate function spaces when the initial datum is given by $u(0,x)= z_0 \mathrm p.v \frac{1}{x}$ for some values of $z_0\in \mathbb{C }\setminus \{ 0\}$ , and $A$ is adequately chosen. This is in deep contrast with the case when the initial datum is the Dirac-delta distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号