首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper studies various Hopf bifurcations in the two-dimensional plane Poiseuille problem. For several values of the wavenumber α, we obtain the branch of periodic flows which are born at the Hopf bifurcation of the laminar flow. It is known that, taking α ≈ 1, the branch of periodic solutions has several Hopf bifurcations to quasi-periodic orbits. For the first bifurcation, calculations from other authors seem to indicate that the bifurcating quasi-periodic flows are stable and subcritical with respect to the Reynolds number, Re. By improving the precision of previous works we find that the bifurcating flows are unstable and supercritical with respect to Re. We have also analysed the second Hopf bifurcation of periodic orbits for several α, to find again quasi-periodic solutions with increasing Re. In this case the bifurcated solutions are stable to superharmonic disturbances for Re up to another new Hopf bifurcation to a family of stable 3-tori. The proposed numerical scheme is based on a full numerical integration of the Navier-Stokes equations, together with a division by 3 of their total dimension, and the use of a pseudo-Newton method on suitable Poincaré sections. The most intensive part of the computations has been performed in parallel. We believe that this methodology can also be applied to similar problems.  相似文献   

2.
A pitchfork bifurcation of an (m−1)-dimensional invariant submanifold of a dynamical system in Rm is defined analogous to that in R. Sufficient conditions for such a bifurcation to occur are stated and existence of the bifurcated manifolds is proved under the stated hypotheses. For discrete dynamical systems, the existence of locally attracting manifolds M+ and M, after the bifurcation has taken place is proved by constructing a diffeomorphism of the unstable manifold M. Techniques used for proving the theorem involve differential topology and analysis. The theorem is illustrated by means of a canonical example.  相似文献   

3.
The existence of bifurcating periodic flows in a quasi-geostrophic mathematical model of wind-driven circulation is investigated. In the model, the Ekman number r and Reynolds number R control the stability of the motion of the fluid. Through rigorous analysis it is proved that when the basic steady-state solution is independent of the Ekman number, then a spectral simplicity condition is sufficient to ensure the existence of periodic solutions branching off the basic steady-state solution as the Ekman number varies across its critical value for constant Reynolds number. When the basic solution is a function of Ekman number, an additional condition is required to ensure periodic solutions.  相似文献   

4.
A five-mode truncation of Navier-Stokes equation for a two-dimensional incompressible fluid on a torus is studied. Its stationary solutions and stability are presented, the existence of attractor and the global stability of the system are discussed. The whole process, which shows a chaos behavior approached through an involved sequence of bifurcations with the changing of Reynolds number, is simulated numerically. Based on numerical simulation results of bifurcation diagram, Lyapunov exponent spectrum, Poincare section, power spectrum and return map of the system are revealed.  相似文献   

5.
6.
7.
This paper is concerned with a numerical approach to the problem of finding the leftmost eigenvalues of large sparse nonsymmetric generalised eigenvalue problems which arise in stability studies of incompressible fluid flow problems. The matrices have a special block structure that is typical of mixed finite element discretizations for such problems. The numerical approach is an extension of the hybrid technique introduced by Saad [22] and utilizes the idea of preconditioning the eigenvalue problem before applying Arnoldi's method. Two preconditioners, one a modified Cayley transform, the other a Chebyshev polynomial transform, are compared in numerical experiments on a double diffusive convection problem and the Cayley transform proves superior. The Cayley transform is then used to provide numerical results for the finite Taylor problem.  相似文献   

8.
9.
The Navier-Stokes equations have been solved in order to obtain an analytical solution of the fully developed laminar flow in a duct having a cross section of a right-angled, isosceles triangle. We obtained a solution for the case of oscillating pressure gradient flow. The pulsating flow is obtained by the superposition of the steady and oscillating pressure gradient solutions.  相似文献   

10.
We consider a 1-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We deal with non-negative solutions and analyze the stability behavior of its unique positive equilibrium solution, which is given by the constant function u≡1. We show that if the delay is small, this equilibrium solution is asymptotically stable, similar as in the case without delay. We also show that, as the delay goes to infinity, this equilibrium becomes unstable and undergoes a cascade of Hopf bifurcations. The structure of this cascade will depend on the parameters appearing in the equation. This equation shows some dynamical behavior that differs from the case where the nonlinearity with delay is in the interior of the domain.  相似文献   

11.
12.
In this paper, we study the propagation dynamics for a class of integrodifference competition models in a periodic habitat. An interesting feature of such a system is that multiple spreading speeds can be observed, which biologically means different species may have different spreading speeds. We show that the model system admits a single spreading speed, and it coincides with the minimal wave speed of the spatially periodic traveling waves. A set of sufficient conditions for linear determinacy of the spreading speed is also given.  相似文献   

13.
In the exterior domain Ω⊂ℝ2 we consider the two-dimensional Navier-stokes system Δu-▽p=(u,▽)u, div u=0 whose solution possesses a finite Dirichlet integral and satisfies the condition lim|x|→∞ u(x)=(1, 0). For this solution, we establish the estimate |u(x)−(1, 0)|≤c|x| −α, where α>1/4. This estimate implies an asymptotic expression for the solution indicating the presence of a track behind the body. Translated fromMatematicheskie Zametki, Vol. 65, No. 2, pp. 246–253, February, 1999.  相似文献   

14.
为了探讨Couette-Taylor流从层流到湍流过渡的方式以及流动发展到湍流之后混沌吸引子的某些特征等问题,采用低模分析方法研究了Couette-Taylor流的部分动力学行为及仿真问题,讨论了Couette-Taylor流三模态类Lorenz型方程组的动力学行为,包括定态的失稳、极限环的出现、分岔与混沌的演变和全局稳定性分析等。通过线性稳定性分析和数值模拟等方法给出了此三维模型分岔与混沌等动力学行为及其演化历程,并借此解释了Couette-Taylor流试验中观察到的部分涡流的演化过程.基于系统的分岔图、Lyapunov指数谱、功率谱、Poincaré(庞加莱)截面和返回映射等揭示了系统混沌行为的普适特征.  相似文献   

15.
In this paper we consider two different initial-boundary value problems in temperature dependent viscous flow when the temperature equation has a nonlinear heat source term. When blow-up occurs we derive lower bounds for the blow-up time in each case.  相似文献   

16.
We study the differential system introduced by M.I. Shliomis to describe the motion of a ferrofluid driven by an external magnetic field. The system is a combination of the Navier-Stokes equations, the magnetization equation and the magnetostatic equations. No regularizing term is added to the magnetization equation. We prove the local-in-time existence of strong solutions to the system.  相似文献   

17.
The stability of the laminar flow between two rotating cylinders (Taylor-Couette flow) is numerically studied. The simulation is based on the equations of motion of an inviscid fluid (Euler equations). The influence exerted on the flow stability by physical parameters of the problem (such as the gap width between the cylinders, the initial perturbation, and the velocity difference between the cylinders) is analyzed. It is shown that the onset of turbulence is accompanied by the formation of large vortices. The results are analyzed and compared with those of similar studies.  相似文献   

18.
19.
The stability of the plane Couette flow is studied using the simplified Boltzmann equation (the BGK equation) in which the high modes in the space of velocities and coordinates are truncated. The solution to the Navier-Stokes equation with small additional terms depending on the Knudsen number is used as the stationary solution. We assume that the perturbations depend only on the coordinate that is orthogonal to the flow. The density perturbations are assumed to be nonzero. In this approximation, the problem is found to be unstable in the case of small Knudsen numbers.  相似文献   

20.
We study the local feedback stabilization of Hopf bifurcations for nonlinear systems of infinite dimensions in the case where the linearized vector field has a pair of simple nonzero imaginary eigenvalues and all its other eigenvalues lie strictly in the left half-plane. Discussing the normal form of nonlinear systems obtained by making use of the integral averaging method, we obtain sufficient and necessary condition for controlling the stability of the systems even if the critical modes are uncontrollable. As an application, we apply the obtained results to the control of axial flow engine compressor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号