共查询到20条相似文献,搜索用时 11 毫秒
1.
Films of magnetic nanoparticles uniformly mixed with non-magnetic nanoparticles have been produced by ultrashort pulsed laser deposition. These films present innovative characteristics with respect to their counterparts produced by standard techniques, as for example nanosecond laser ablation or sputtering, due to the peculiar shape and preferential distribution of their constituent nanoparticles. In the present investigation, the difficult coalescence among the deposited nanoparticles, specific characteristic of the ultrashort pulsed laser deposition, is particularly stressed for what concerns its effect on the collective magnetic behaviour. In particular, we observed that, even for a significant fraction of magnetic particles, the films exhibit an unusual high remanent magnetization, together with relatively low values of saturation and coercive fields, showing a strong squareness of the hysteresis loops. In perspective, these nanogranular films appear very promising for potential application as permanent magnets and in magnetic recording. 相似文献
2.
采用脉冲激光沉积(PLD)技术在MgO基片上制备了金属Fe薄膜.利用原子力显微镜研究了不同制备温度对薄膜表面形貌的影响.x射线衍射分析表明沉积温度大于500℃时,Fe薄膜在MgO基片上有很好的结晶性,并有单一取向.通过z扫描方法测量了超薄Fe膜的光学非线性,得到了Fe薄膜的非线性折射率n2=709×10-5cm2/ kW,非线性吸收系数 β=-552×10-3cm/W.
关键词:
Fe薄膜
非线性
脉冲激光沉积 相似文献
3.
Vanadium-doped ZnO films (Zn1−xVxO, where x = 0.02, 0.03, 0.05 and 0.07), were formed from ceramic targets on c-cut sapphire substrates using pulsed laser deposition at substrate temperature of 600 °C and oxygen pressure of 10 Pa. In order to clarify how the vanadium concentration influences the films’ properties, structural and magnetic investigations were performed. All films crystallised in wurtzite phase and presented a c-axis preferred orientation at low concentrations of vanadium. The results implied that the doping concentration and crystalline microstructure influence strongly the system's magnetic characteristics. Weak ferromagnetism was registered for the film with the lowest doping concentration (2 at.%), which exhibited a ferromagnetic behavior at Curie temperature higher than 300 K. Increasing the vanadium content in the film caused degradation of the magnetic ordering. 相似文献
4.
采用脉冲激光气相沉积(PLD)法,研究了氢气压强对非晶CH薄膜性能的影响。原子力显微镜图和白光干涉图显示,薄膜表面平整致密,随着氢气压强增大,粗糙度变大。拉曼光谱分析表明,氢气压强增加,G峰和D峰位置都在向高波数方向移动。傅里叶变换红外光谱分析显示,薄膜中存在sp3—CH2和sp2—CH等基团。最后,采用PLD漂浮法在最优参数氢气压强为0.3 Pa下,成功制备了不同厚度(100~300 nm)、满足一定力学强度、无明显宏观缺陷的自支撑CH薄膜。 相似文献
5.
A. Palla-Papavlu V. DincaV. Ion A. MoldovanB. Mitu C. LuculescuM. Dinescu 《Applied Surface Science》2011,257(12):5303-5307
The development of laser techniques for the deposition of polymer and biomaterial thin films on solid surfaces in a controlled manner has attracted great attention during the last few years. Here we report the deposition of thin polymer films, namely Polyepichlorhydrin by pulsed laser deposition. Polyepichlorhydrin polymer was deposited on flat substrate (i.e. silicon) using an NdYAG laser (266 nm, 5 ns pulse duration and 10 Hz repetition rate).The obtained thin films have been characterized by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry.It was found that for laser fluences up to 1.5 J/cm2 the chemical structure of the deposited polyepichlorhydrin polymer thin layers resembles to the native polymer, whilst by increasing the laser fluence above 1.5 J/cm2 the polyepichlorohydrin films present deviations from the bulk polymer.Morphological investigations (atomic force microscopy and scanning electron microscopy) reveal continuous polyepichlorhydrin thin films for a relatively narrow range of fluences (1-1.5 J/cm2).The wavelength dependence of the refractive index and extinction coefficient was determined by ellipsometry studies which lead to new insights about the material.The obtained results indicate that pulsed laser deposition method is potentially useful for the fabrication of polymer thin films to be used in applications including electronics, microsensor or bioengineering industries. 相似文献
6.
Thin films of zinc oxide have been deposited by reactive pulsed laser ablation of Zn and ZnO targets in presence of a radio frequency (RF) generated oxygen plasma. The gaseous species have been deposited at several substrate temperatures, using the on-axis configuration, on Si (1 0 0). Thin films have been characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectroscopy. A comparison among conventional PLD and reactive RF plasma-assisted PLD has been performed. 相似文献
7.
利用等离子体增强脉冲激光沉积系统在Si(100)基底上沉积出了高质量的o-BN薄膜,利用红外光谱(FTIR)、X射线衍射谱(XRD)和原子力显微镜照片对o-BN薄膜进行了表征.通过红外光谱(FTIR)得到o-BN薄膜的红外峰特征峰值为1189cm-1,1585cm-1和1450cm-1;由XRD谱得到o-BN薄膜的(111),(020),(021),(310)和(243)各晶面的衍射峰, 特别是(310)和(243)晶面的衍射峰非常强;通过原子力显微镜照片清楚看到BN薄膜具有尖状突起的表面形貌.
关键词:
等离子体增强脉冲激光沉积
氮化硼薄膜
X射线衍射谱 相似文献
8.
Matrix assisted pulsed laser evaporation (MAPLE) has been applied for deposition of thin polyethylene glycol (PEG) films with infrared laser light at 1064 nm. We have irradiated frozen targets (of 1 wt.% PEG dissolved in water) and measured the deposition rate in situ with a quartz crystal microbalance. The laser fluence needed to produce PEG films turned out to be unexpectedly high with a threshold of 9 J/cm2, and the deposition rate was much lower than that with laser light at 355 nm. Results from matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis demonstrate that the chemistry, molecular weight and polydispersity of the PEG films were identical to the starting material. Studies of the film surface with scanning electron microscopy (SEM) indicate that the Si-substrate is covered by a relatively homogenous PEG film with few bare spots. 相似文献
9.
10.
DongQi Yu LiZhong Hu Jiao Li Hao Hu HeQiu Zhang Song-En Andy Len Xi Chen Qiang Fu ShuangShuang Qiao 《中国科学G辑(英文版)》2009,52(2):207-211
High-density well-aligned ZnO nanorods were successfully synthesized on ZnO-buffer-layer coated indium phosphide (InP) (100)
substrates by a pulsed laser deposition (PLD) method. Scanning electron microscopy images show that the ZnO buffer layer formed
uniform drip-like structure and ZnO nanorods were well-oriented perpendicular to the substrate surface. The sharp diffraction
peak observed at 34.46° in X-ray diffraction scanning pattern suggests that the ZnO nanorods exhibit a (002)-preferred orientation.
The PL spectra of ZnO samples shows a strong near band edge emission centered at about 380 nm and a weak deep level emission
centered at around 495 nm, and it demonstrates that the ZnO nanorods produced in this work have high optical quality, which
sheds light on further applications for nanodevices.
Supported by the National Natural Science Foundation of China (Grant No. 50532080), the Science & Technology Foundation for
Key Laboratory of Liaoning Province (Grant No. 20060131), and the Doctoral Project by China Ministry of Education (Grant No.
20070141038) 相似文献
11.
A. SzekeresZs. Fogarassy P. PetrikE. Vlaikova A. CzirakiG. Socol C. RistoscuS. Grigorescu I.N. Mihailescu 《Applied Surface Science》2011,257(12):5370-5374
We obtained AlN thin films by pulsed laser deposition (PLD) from a polycrystalline AlN target using a pulsed KrF* excimer laser source (248 nm, 25 ns, intensity of ∼4 × 108 W/cm2, repetition rate 3 Hz, 10 J/cm2 laser fluence). The target-Si substrate distance was 5 cm. Films were grown either in vacuum (10−4 Pa residual pressure) or in nitrogen at a dynamic pressure of 0.1 and 10 Pa, using a total of 20,000 subsequent pulses. The films structure was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectral ellipsometry (SE). Our TEM and XRD studies showed a strong dependence of the film structure on the nitrogen content in the ambient gas. The films deposited in vacuum exhibited a high quality polycrystalline structure with a hexagonal phase. The crystallite growth proceeds along the c-axis, perpendicular to the substrate surface, resulting in a columnar and strongly textured structure. The films grown at low nitrogen pressure (0.1 Pa) were amorphous as seen by TEM and XRD, but SE data analysis revealed ∼1.7 vol.% crystallites embedded in the amorphous AlN matrix. Increasing the nitrogen pressure to 10 Pa promotes the formation of cubic (≤10 nm) crystallites as seen by TEM but their density was still low to be detected by XRD. SE data analysis confirmed the results obtained from the TEM and XRD observations. 相似文献
12.
CdS thin films have been grown on Si(1 1 1) and quartz substrates using femtosecond pulsed laser deposition. X-ray diffraction, atomic force microscopy, photoluminescence measurement, and optical transmission spectroscopy were used to characterize the structure and optical properties of the deposited CdS thin films. The influence of the laser fluence (laser incident energy in the range 0.5–1.5 mJ/pulse) on the structural and optical characterizations of CdS thin films has been studied. The results indicate that the structure and optical properties of the CdS thin films can be improved as increasing the per pulse output energy of the femtosecond laser to 1.2 mJ. But when the per pulse output energy of the femtosecond laser is further increased to 1.5 mJ, which leads to the degradation of the structure and optical properties of the CdS thin films. 相似文献
13.
Amorphous thin films (1 − x)(4GeSe2-Ga2Se3)-xKBr (x = 0, 0.1, 0.2, 0.3) were prepared by the pulsed laser deposition (PLD) technique. The optical parameters were calculated using the Swanepoel method from the optical transmission spectra. The optical band gap () of the studied films increased while the index of refraction decreased when increased the content of KBr. The Tauc slopes were discussed as an indicator of the degree of structural randomness of amorphous semiconductors. The index of refraction decreased and increased after annealing of as-deposited films below the glass transition temperature. The thermal-bleaching and thermal- contraction effects were observed, which are discussed in relation to the reduction in the density of homopolar bonds confirmed by the Raman spectra analysis and the decreased amount of fragments of the as-deposited films, respectively. 相似文献
14.
Ramu Pasupathi Sugavaneshwar Thang Duy Dao Takahiro Yokoyama Satoshi Ishii 《辐射效应与固体损伤》2018,173(1-2):112-117
In this work, we have fabricated lead selenide (PbSe) thin films by the pulsed laser deposition method on Si/SiO2 substrates and investigated the effect of oxygen annealing (sensitization) in these films. The oxygen-sensitized films show high responsivity in the visible (VIS) and the near-infrared (NIR) region at room temperature without cooling. We also demonstrate the effective surface oxidation of PbSe thin films during the oxygen annealing process without treated with commonly used halogens that leads to a better photoresponse in these PbSe films. 相似文献
15.
Tribological properties of diamond-like carbon films deposited by pulsed laser arc deposition 总被引:1,自引:0,他引:1 下载免费PDF全文
A novel method, pulsed laser arc deposition combining the advantages
of pulsed laser deposition and cathode vacuum arc techniques, was
used to deposit the diamond-like carbon (DLC) nanofilms with
different thicknesses. Spectroscopic ellipsometer, Auger electron
spectroscopy, x-ray photoelectron spectroscopy, Raman spectroscopy,
atomic force microscopy, scanning electron microscopy and
multi-functional friction and wear tester were employed to
investigate the physical and tribological properties of the deposited
films. The results show that the deposited films are amorphous and
the sp$^{2}$, sp$^{3}$ and C--O bonds at the top surface of the films
are identified. The Raman peak intensity and surface roughness
increase with increasing film thickness. Friction coefficients are
about 0.1, 0.15, 0.18, when the film thicknesses are in the range of
17--21~nm, 30--57~nm, 67--123~nm, respectively. This is attributed to
the united effects of substrate and surface roughness. The wear
mechanism of DLC films is mainly abrasive wear when film thickness
is in the range of 17--41~nm, while it transforms to abrasive
and adhesive wear, when the film thickness lies between 72 and 123~nm. 相似文献
16.
17.
Effects of deposition temperature on the structural and morphological properties of thin ZnO films fabricated by pulsed laser deposition 总被引:3,自引:0,他引:3
Rakhi Khandelwal Amit Pratap Singh Avinashi Kapoor Sorin Grigorescu Paola Miglietta Nadya Evgenieva Stankova Alessio Perrone 《Optics & Laser Technology》2008,40(2):247-251
ZnO thin films were grown on Si(1 0 0) substrates using pulsed laser deposition in O2 gas ambient (10 Pa) and at different substrate temperatures (25, 150, 300 and 400 °C). The influence of the substrate temperature on the structural and morphological properties of the films was investigated using XRD, AFM and SEM. At substrate temperature of T=150 °C, a good quality ZnO film was fabricated that exhibits an average grain size of 15.1 nm with an average RMS roughness of 3.4 nm. The refractive index and the thickness of the thin films determined by the ellipsometry data are also presented and discussed. 相似文献
18.
脉冲激光沉积技术是现代常用的先进薄膜材料制备技术之一.文章在简要介绍脉冲激光沉积技术及其进展的基础上,较全面地介绍了脉冲激光沉积动力学的基本物理图像和动力学构架,深入地探讨了激光烧蚀靶材过程、等离子体膨胀过程和薄膜沉积过程的动力学规律,阐述了我国学者在脉冲激光沉积动力学研究方面的贡献,例如包括脉冲激光沉积三个工艺过程自洽的统一模型,等离子体膨胀的冲击波模型,基于局域能量动量守恒定律的新等离子体演化动力学模型,包括热源项、蒸发项、等离子体屏蔽效应和动态物性参数的烧蚀热传导模型,考虑电子碰撞效应和能带结构变化的修正双温模型,能统一描写从纳秒级到飞秒级脉冲激光烧蚀规律的统一双温模型等. 相似文献
19.
Bao Y. Man Hong Z. Xi Chuan S. Chen Mei Liu Jing Wei 《Central European Journal of Physics》2008,6(3):643-647
Using a pulsed laser deposition (PLD) process on a ZnO target in an oxygen atmosphere, thin films of this material have been
deposited on Si(111) substrates. An Nd: YAG pulsed laser with a wavelength of 1064 nm was used as the laser source. The influences
of the deposition temperature, laser energy, annealing temperature and focus lens position on the crystallinity of ZnO films
were analyzed by X-ray diffraction. The results show that the ZnO thin films obtained at the deposition temperature of 400°C
and the laser energy of 250 mJ have the best crystalline quality in our experimental conditions. The ZnO thin films fabricated
at substrate temperature 400°C were annealed at the temperatures from 400°C to 800°C in an atmosphere of N2. The results show that crystalline quality has been improved by annealing, the optimum temperature being 600°C. The position
of the focusing lens has a strong influence on pulsed laser deposition of the ZnO thin films and the optimum position is 59.5
cm from the target surface for optics with a focal length of 70 cm.
相似文献