首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
CrN, CrSiN and CrCuN films were deposited by DC magnetron reactive sputtering with hot pressed pure Cr, CrSi, and CrCu targets, respectively. As substrate bias increased from −50 V to −200 V, the preferred orientation of CrN films changed from (1 1 1) to (2 0 0). And the Si doping did not change this condition. However, the Cu doping films kept (2 0 0) orientation all along. CrN films presented typical columnar structure, and the alloying of Si and Cu could restrain columnar growth leading to dense structure. The CrSiN film was composed of nanocrystallites distributed in amorphous Si3N4, while no amorphous phase existed in CrCuN films.  相似文献   

2.
CrSiN coatings were deposited on stainless steel (Grade: SA304) and silicon Si(1 0 0) substrates, with varying argon-nitrogen gas proportions and deposition temperature, using reactive magnetron sputtering technique in the present work. The influence of sputtering (Ar) and reactive gas proportions (N2) and temperature on the structural properties of the CrSiN coating was investigated. A small amount of silicon content (3.67 at.% Si) plays a crucial role in addition to the nitrogen content for the formation of different phases in the CrSiN coatings as observed in the present work. For example, the coating with comparatively low nitrogen content, 40% N2, during deposition, formed a crystalline structure consisting of nano-crystalline CrN which is separated by an amorphous SiN phase, as evident from X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The formation of CrN(1 1 1) and Cr2N(1 1 1) phases has occurred at 30% N2 with 3.67% Si content, which transformed in to CrN(1 1 1) and CrN(2 0 0) with increase in N2 content but with same Si content. The surface topography and morphology of the coatings were analyzed by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), respectively. A less columnar growth is observed in CrSiN coatings deposited at low argon content, Ar:N2 (20:80), and with 3.67 at.% Si in the coatings. However, it becomes dense with increase in nitrogen content and temperature. The XRD analysis showed that the intensity of a dominating peak (1 1 1) is decreasing from (80:20) to (60:40) argon:nitrogen environment. With a further increase of nitrogen content, from (60:40), in the sputtering gas mixture, to (40:60) argon-nitrogen, there is a sudden increase in (1 1 1) peak and above (40:60), the peak reduction rate is very slow than the previous one. The (1 1 1) and (2 0 0) peak intensity variations are very limited due to high nitrogen content, above 50%, and considerable amount of Si atoms, 3.67 at.%, present in the CrN coatings.  相似文献   

3.
Ti-Si-N thin flms with different silicon contents are deposited by a cathodic arc technique in an Ar+N2+SiH4 mixture atmosphere. With the increase of silane flow rate, the content of silicon in the Ti-Si-N films varies from 2.0 at. % to 12.2 at. %. Meanwhile, the cross-sectional morphology of these films changes from an apparent columnar microstructure to a dense fine-grained structure. The x-ray diffractometer (XRD) and x-ray photoelectron spectroscopy (XPS) results show that the Ti-Si-N film consists of TiN crystallites and SiNx amorphous phase. The corrosion resistance is improved with the increase of silane flow rate. Growth defects in the films produced play a key role in the corrosion process, especially for the local corrosion. The porosity of the films decreases from 0.13%to 0.00032% by introducing silane at the flow rate of 14sccm.  相似文献   

4.
Silicon oxynitride films have been grown on silicon by current-controlled reactive sputtering. The content of oxygen in the films could be well controlled by regulating the sputtering current under the reactive gas of Ar+ N2 with an oxygen content of around 3%. The atomic ratio of oxygen to nitrogen in the silicon oxynitride film became larger with increasing sputtering current. It has been found that electron irradiation of the silicon substrate induces adsorption of oxygen and nitrogen. The degree of oxygen adsorption was about ten times larger than that of nitrogen. This phenomenon is a key mechanism in controlling the film composition. The adsorptive mechanism might be explained by the phenomenon of surface activation by the electron bombardment. Utilizing this technique, wettability by germanium of silicon oxynitride films could be controlled by varying their oxygen and nitrogen contents. A better wetting condition was obtained from films with large atomic ratio of nitrogen to oxygen in the silicon oxynitride film.  相似文献   

5.
Cr1−xAlxC films were deposited on high-speed steel by RF reactive magnetron sputtering. In this study, we aimed to identify the effect of the Al content on the properties of Cr1−xAlxC films. We found that Cr1−xAlxC films exhibited a fine columnar grain microstructure with some special characteristics, such as high hardness of Hv 1426, a low friction coefficient of 0.29, and a large contact angle of 90° for x = 0.18. Furthermore, an increase in Al content resulted in a decrease in film hardness and an increase in contact angle. Moreover, on annealing at 923 K, the mechanical properties of the films improved and a dense protective film of complex Cr2O3 and Al2O3 oxides was formed on the surface for better wear resistance, which will ultimately increase the lifetime of the high-speed steel substrate.  相似文献   

6.
Ti-Si-N coatings with different silicon contents (0-12 at.%) were deposited onto Si(1 0 0) wafer, AISI M42 high speed steel, and stainless steel plate, respectively. These coatings were characterized and analyzed by using a variety of analytical techniques, such as XRD, AES, SEM, XPS, nanoindentation measurements, Rockwell C-type indentation tester, and scratch tester. The results revealed that the hardness was strongly correlated to the amount of silicon addition into a growing TiN film. The maximum hardness of 47.1 GPa was achieved as the Si content was 8.6 at.%. In the mechanical and oxidation resistance measurements, the Ti-Si-N coatings showed three distinct behaviors. (i) The coatings with Si contents of no more than 8.6 at.% performed good adhesion strength quality onto the HSS substrates. (ii) The fracture toughness of the coatings decreased with the increase in Si content. (iii) The Ti-Si-N coating with 8.6 at.% Si showed the excellent oxidation resistance behavior. The cutting performance under using coolant conditions was also evaluated by a conventional drilling machine. The drills with Ti-Si-N coatings performed much better than the drills with TiN coating and the uncoated drills.  相似文献   

7.
For electrolytic capacitor application of the single-phase Ti alloys containing supersaturated silicon, which form anodic oxide films with superior dielectric properties, porous Ti-7 at% Si columnar films, as well as Ti columnar films, have been prepared by oblique angle magnetron sputtering on to aluminum substrate with a concave cell structure to enhance the surface area and hence capacitance. The deposited films of both Ti and Ti-7 at% Si have isolated columnar morphology with each column revealing nanogranular texture. The distances between columns are ∼500 nm, corresponding to the cell size of the textured substrate and the gaps between columns are 100-200 nm. When the porous Ti-7 at% Si film is anodized at a constant current density in ammonium pentaborate electrolyte, the growth of a uniform amorphous oxide film continues to ∼35 V, while it is limited to less than 6 V on the porous Ti film. The maximum voltage of the growth of uniform amorphous oxide films on the Ti-7 at% Si films is similar for both the flat and porous columnar films, suggesting little influence of surface roughness on the amorphous-to-crystalline transition of growing anodic oxide under the high electric field. Due to the suppression of crystallization to sufficiently high voltages, the anodic oxide films formed on the porous Ti-7 at% Si film shows markedly improved dielectric properties, in comparison with those on the porous Ti film.  相似文献   

8.
By means of the reactive magnetron sputtering method, a series of Nb-Si-N composite films with different Si contents were deposited in an Ar, N2 and SiH4 mixture atmosphere. These films’ chemical composition, phase formation, microstructure and mechanical properties were characterized by the energy dispersive spectroscopy, X-ray diffraction, transmission electron microcopy, atomic force microscopy and nanoindentation. The experimental results showed that the silicon content in the Nb-Si-N composite films can be conveniently controlled by adjusting the SiH4 partial pressure in mixed gas. The hardness and elastic modulus of the Nb-Si-N films were remarkably increased with a small amount of silicon addition and reached their maximum values of 53 and 521 GPa, respectively, at 3.4 at.% Si. Such an obvious enhancement of mechanical properties is related to the increment of crystal defects in the Nb-Si-N films. With silicon content increasing in the films further, the mechanical properties decreased gradually to somewhat a bit lower than those of the NbN film.  相似文献   

9.
Erbium fluoride (ErF3) films were thermally deposited on Ge(1 1 1), Si(0 0 1) and copper mesh grid with different substrate temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and morphology of the films. The structure of ErF3 films deposited on germanium and silicon changed from amorphous to crystalline with increasing the substrate temperature, while the crystallization temperature of the films on silicon is higher than that of on germanium. The infrared optical properties of the films change greatly with the evolution of crystal structure. It is also found that the morphology of ErF3 film on Ge(1 1 1) at 200 °C is modulated by the stress between the substrate and film. The SEM and TEM results confirmed that the ErF3 films on copper mesh grid were crystalline even at 100 °C. Interestingly, the ErF3 films show flower-like surface morphology when deposited on copper mesh at 200 °C. The crystallization temperature (Tc) of ErF3 films on the three substrates has the relation which is which is induced by the wetting angle of ErF3 films on different substrates.  相似文献   

10.
WN_x films are deposited by reactive chemical vapor deposition at different amounts of nitrogen in gas mixtures.Experimental data demonstrate that nitrogen amount has a strong effect on microstructure, phase formation,texture morphology, mechanical and optical properties of the WN_x films. With increasing nitrogen a phase transition from a single WN_x phase with low crystallinity structure to a well-mixed crystallized hexagonal WN_x and face-centered-cubic W_2 N phases appears. Relatively smooth morphology at lower N_2 concentration changes to a really smooth morphology and then granular with coarse surface at higher N_2 concentration. The SEM observation clearly shows a columnar structure at lower N_2 concentration and a dense nanoplates one for higher nitrogen content. The hardness of WN_x thin films mainly depends on the film microstructure. The absorbance peak position shifts to shorter wavelength continuously with increasing nitrogen amount and decreasing particle size.  相似文献   

11.
Gomoyunova  M. V.  Grebenyuk  G. S.  Pronin  I. I. 《Technical Physics》2011,56(11):1670-1674
The initial stages of Heusler alloy (Co2FeSi) thin film growth by reactive epitaxy on the Si(100)2 × 1 surface are studied, and formation conditions for this alloy are found. At a substrate temperature of lower than, or equal to, 180°C, an island film of ternary Co-Fe-Si film grows on the surface. The silicon content in this film is lower than in the compound to be synthesized. The film becomes continuous when its thickness exceeds 1.2 nm. It is shown that post-growth annealing at 240°C can raise the silicon content in the film and be conducive to obtaining Heusler alloy of a desired composition. In situ measurements of the films show that ferromagnetic ordering in them has a threshold and shows up at the coalescence growth stage of the Co-Fe-Si island alloy.  相似文献   

12.
Permalloy (Py) films were deposited on Si(111) or Corning 0211 glass substrates. There were two deposition temperatures: T s=room temperature (RT) and T s=270°C. The film thickness (t f) ranges from 10 to 130 nm. The crystal structure properties of the films were studied by X-ray diffraction and transmission electron microscopy. Mechanical properties (including Young’s modulus E f and hardness H f) of each film were measured by the nanoindentation (NI) technique. E f of the Py/Si(111) films was checked again by the laser induced surface acoustic wave (LA-SAW) technique. It was found that the NI technique is best suited for the measurements of E f and H f, but only when the sample belongs to the (soft film)/(soft substrate) system, such as the Py/glass film. For the (soft film)/(hard substrate) system, such as the Py/Si(111) film, the NI technique often provides higher values of E f and H f than expected. The anomalous phenomenon, associated with the NI technique may be related to the anisotropic crystal structures in the Py films on different kinds of substrates. From this study, we conclude that [E f of Py/Si(111)]>[E f of Py/glass] and [H f of Py/Si(111)]>[H f of Py/glass]. The good mechanical properties of the Py/Si(111) film make it a better candidate for recording head applications.  相似文献   

13.
Boron suboxide thin films have been deposited on Si(100) substrates by reactive RF magnetron sputtering of a sintered B target in an Ar/O2 atmosphere. Elastic recoil detection analysis was applied to determine the film composition and density. Film structure was studied by X-ray diffraction and transmission electron microscopy. The elastic modulus, measured by nanoindentation, was found to decrease as the film density decreased. The relationship was affected by tuning the negative substrate bias potential and the substrate temperature during film growth. A decrease in film density, by a factor of 1.55, caused an elastic modulus reduction by a factor of 4.5, most likely due to formation of nano-pores containing Ar. It appears evident that the large scattering in the published data on elastic properties of films with identical chemical composition can readily be understood by density variations. These results are important for understanding the elastic properties of boron suboxide, but may also be qualitatively relevant for other B-based material systems. Received: 22 February 2002 / Accepted: 11 April 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +46-13/288-918, E-mail: denmu@ifm.liu.se  相似文献   

14.
The microstructure and electronic structure of silicon-rich oxide (SRO) films were investigated using transmission electron microscopy and electron energy loss spectroscopy as the main analytical techniques. The as-deposited SRO film was found to be a single phase SiO1.0, as suggested by its electronic structure characteristics determined by the valence electron energy loss spectrum. This single phase undergoes a continuous but incomplete phase decomposition to Si and SiO2 for films annealed between 300 and 1100°C. The resulting Si phase first appears as ~2?nm-diameter amorphous clusters which grow to larger sizes at higher annealing temperatures, but only crystallize at a critical temperature between 800 and 900°C. This cluster/matrix configuration of the SRO films is consistent with the appearance of the interface plasmon and its oscillator strength as a function of the nanoparticle size. Three separate stages were identified in the sequence of annealed films that were characterized by the presence of single-phase SiO, amorphous silicon nanoclusters, and silicon nanocrystals, respectively. The presence of amorphous silicon nanoclusters in the intermediate stage, the mean size of which can be controlled via annealing, may offer an alternative to silicon nanocrystal composites for optical applications.  相似文献   

15.
Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH4+Ar+H2 gas mixture at a low substrate temperature of 300 °C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si–Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/ and a hole concentration of 6.3×1018 cm−3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300 °C is proposed.  相似文献   

16.
Silicon carbonitride (SiCN) thin films were deposited on n-type Si (1 0 0) and glass substrates by reactive magnetron sputtering of a polycrystalline silicon target in a mixture of argon (Ar), nitrogen (N2) and acetylene (C2H2). The properties of the films were characterized by scanning electron microscope with an energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and ultraviolet-visible spectrophotometer. The results show that the C2H2 flow rate plays an important role in the composition, structural and optical properties of the films. The films have an even surface and an amorphous structure. With the increase of C2H2 flow rate, the C content gradually increases while Si and N contents have a tendency to decrease in the SiCN films, and the optical band gap of the films monotonically decreases. The main bonds are Si-O, N-Hn, C-C, C-N, Si-N, Si-C and Si-H in the SiCN films while the chemical bonding network of Si-O, C-C, C-O, C-N, N-Si and CN is formed in the surface of the SiCN films.  相似文献   

17.
A ZnO thin film was successfully synthesized on glass, flat surface and textured silicon substrates by chemical spray deposition. The textured silicon substrate was carried out using two solutions (NaOH/IPA and Na2CO3). Textured with Na2CO3 solution, the sample surface exhibits uniform pyramids with an average height of 5 μm. The properties and morphology of ZnO films were investigated. X-ray diffraction (XRD) spectra revealed a preferred orientation of the ZnO nanocrystalline film along the c-axis where the low value of the tensile strain 0.26% was obtained. SEM images show that all films display a granular, polycrystalline morphology. The morphology of the ZnO layers depends dramatically on the substrate used and follows the contours of the pyramids on the substrate surface. The average reflectance of the textured surface was found to be around 13% and it decreases dramatically to 2.57% after deposition of a ZnO antireflection coating. FT-IR peaks arising from the bonding between Zn–O are clearly represented using a silicon textured surface. A very intense photoluminescence (PL) emission peak is observed for ZnO/textured Si, revealing the good quality of the layer. The PL peak at 380.5 nm (UV emission) and the high-intensity PL peak at 427.5 nm are observed and a high luminescence occurs when using a textured Si substrate.  相似文献   

18.
A series of Zr-Si-N composite films with different Si contents were synthesized in an Ar and N2 mixture atmosphere by the bi-target reactive magnetron sputtering method. These films’ composition, microstructure and mechanical properties were characterized by energy dispersive spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy and nanoindentation. Experimental results revealed that after the addition of silicon, Si3N4 interfacial phase formed on the surface of ZrN grains and prevented them from growing up. Zr-Si-N composite films were strengthened at low Si content with the hardness and elastic modulus reaching their maximum values of 29.8 and 352 GPa at 6.2 at% Si, respectively. With a further increase of Si content, the crystalline Zr-Si-N films gradually transformed into amorphous, accompanied with a remarkable fall of films’ mechanical properties. This limited enhancement of mechanical properties in the Zr-Si-N films may be due to the low wettability of Si3N4 on the surface of ZrN grains.  相似文献   

19.
Nanostructured nickel oxide (NiO) photoelectrodes were fabricated with controlled morphology and texture using single‐step aerosol‐assisted chemical vapour deposition (AACVD). The durable one‐step film fabrication process resulted in highly crystalline columnar structure. Texture controlled films were also fabricated from granular to crystalline columnar morphology by controlling the deposition temperature. The thin film electrodes are highly reproducible and possess an optical bandgap of ~3.7 eV and exhibit cathodic photocurrent. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
利用原子力显微镜分析了ZnO薄膜在具有本征氧化层的Si(100)和Si(111)基片上的表面形貌 随沉积时间的演化. 通过对薄膜生长形貌的动力学标度表征,研究了射频反应磁控溅射条件 下,ZnO薄膜的成核过程及生长动力学行为. 研究发现,ZnO在基片表面的成核过程可分为初 期成核阶段、低速率成核阶段和二次成核阶段. 对于Si(100)基片,三个成核阶段的生长指 数分别为β1=1.04,β2=0.25±0.01,β3=0.74;对 于Si(11 关键词: ZnO薄膜 磁控溅射 生长动力学 成核机制  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号