首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The dielectric, structural, and kinetic properties of (GaN)54(SiO2)50 nanoparticles of the following two types are studied using the method of molecular dynamics: particles of GaN covered by a SiO2 layer and particles of SiO2 with a GaN layer deposited onto it. The absorption and reflection spectra of these nano-particles are considerably different in the respective frequency ranges 0 ≤ ω ≤ 1500 cm?1 and ω > 700 cm?1. The single-centered functions of the radial distribution of the nanoparticles differ in their peak positions and intensities, including the “tail” part for r > 0.9 nm. The structure of nanoparticles with the SiO2 nucleus is completely tetrahedral, while the nearest six-atom environment is dominant in the structure of a particle with the GaN nucleus. The mobility of gallium atoms in the nanoparticles is lower by two orders than that of other elements constituting them.  相似文献   

2.
A two-step approach for macro-synthesis of GaN nanowires was developed in this study. GaN nanoparticles were firstly synthesized through a facile solid-state reaction using an organic reagent dicyandiamide (C2N4H4) and Ga2O3 as precursors. Subsequently, single-crystalline wurtzite GaN nanowires were grown on gold-coated 6H-SiC substrates via novel pulsed electron deposition (PED) technique using the as-prepared GaN nanoparticles as target, which provides a new route employing nanoparticles as precursors to fabricate GaN nanowires. It is found that pulsed electron ablation induced Ga and N plasma directly towards the gold-coated substrate to initialize the vapor-liquid-solid (VLS) growth processes. The morphological and structural properties were investigated in detail and Raman scattering spectrum of these nanowires presented some new features.  相似文献   

3.
In this paper, GaN nanoparticles were synthesized from the complex Ga(H2NCONH2)6Cl3 in the flow of NH3 at a mild temperature (350 °C). Further purification was performed by the ethanol-thermal method. The ethanol-thermal method also prompted the GaN nanoparticles to grow into an anisotropic morphology. XRD patterns reveal that GaN nanoparticles have crystallized in a hexagonal wurtzite structure. TEM observation shows that the average size of the as-prepared nanoparticles is about 5–10 nm. The photoluminescence spectrum exhibits a broad green emission band with a peak at 510 nm. It can be known from the first-principle theoretic simulation by the TDDFT method that this fluorescence emission band is attributed to the hydride defects of V N-H on the surface of GaN nanoparticles.  相似文献   

4.
The Raman spectra of the (GaN)129, (SiO2)86, and (GaN)54(SiO2)50 nanoparticles were calculated using the molecular dynamics method. The spectrum of (SiO2)86 had three broad bands only, whereas the Raman spectrum of (GaN)129 contained a large number of overlapping bands. The form of the Raman spectrum of (GaN)54(SiO2)50 was determined by the arrangement of the GaN and SiO2 components in it. The nanoparticle with a GaN nucleus had a continuous fairly smooth spectrum over the frequency range 0 ≤ ω ≤ 600 cm−1, whereas the spectrum of the nanoparticle with a SiO2 nucleus contained well-defined bands caused by vibrations of groups of atoms of different kinds and atoms of the same kind.  相似文献   

5.
Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated on Pt/Ti/SiO2/Si(1 0 0) substrates by chemical solution deposition (CSD), and the dependence of ferroelectric and dielectric properties of the as-deposited BLT thin films on excess Bi content in precursor sols was studied. It is found that the prepared BLT thin film shows the best polarization-electric field, capacitance-voltage and dielectric constant (?r)-frequency characteristics, when the value of excess Bi content in precursor sols is 10%. In detail, its remnant polarization (2Pr) value is 40 μC/cm2, the capacitance tunability is 21% measured at room temperature under conditions of an applied voltage of 8 V and measurement frequency of 10 kHz, and the ?r is 696 at 100 kHz frequency.  相似文献   

6.
GaN nanoparticles were prepared on sapphire (0001) substrates with ZnO sacrificial layers by self assembly of Ga2O3 films in their reaction with NH3. ZnO sacrificial layers with different thicknesses and Ga2O3 films were deposited on sapphire substrates in turn by a radio frequency (RF) magnetron sputtering system. Nitridation of the Ga2O3 films was then carried out in a quartz tube furnace. The effect of ZnO sacrificial layer thickness on the structure and optical properties of nanoparticles prepared by RF magnetron sputtering were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and photoluminescence (PL). GaN nanoparticles with ZnO sacrificial layers of different thicknesses possess hexagonal wurtzite crystal structure and have a preferred orientation with c axis perpendicular to the sapphire substrates. XRD, SEM, and AFM results reveal that the better-crystallinity, uniform, and well-dispersed GaN nanoparticles (~30 nm) without agglomeration were obtained with a ZnO sacrificial layer 300-nm thick. The PL result reveals that the optical properties of the GaN nanoparticles are improved with a ZnO sacrificial layer 300-nm thick. Therefore, we suggest that a ZnO sacrificial layer 300-nm thick is the most suitable condition for obtaining better-quality GaN nanoparticles with good luminescence performance. Moreover, the mechanism of the formation of GaN nanoparticles with ZnO sacrificial layers is also discussed.  相似文献   

7.
Microwave-assisted polyol process was developed for the synthesis of magnetite nanoparticles with precisely controlled size, high crystallinity and high water solubility. The process is simple, time-saving and low energy-consuming due to the advantages of polyols and microwave irradiation combined. The crystal phases of the nanoparticles were determined by transmission electron microscopy, X-ray powder diffraction and Raman spectrum. The coating materials of the nanoparticles were analyzed by Fourier transformed infrared spectroscopy and thermal gravimetric analysis. Precise size tuning enables an easier way to adjust the relaxation properties of the magnetite nanoparticles. The colloid nanoparticles with high longitudinal relaxivity (r1) and low ratio of transverse relaxivity (r2) to r1 have a potential application in magnetic resonance angiography.  相似文献   

8.
This paper reports strong deep-ultraviolet and visible photoluminescence (PL) of the GaN nanoparticles depending on the conversion time from Ga2O3 to GaN. Monoclinic β-Ga2O3 nanoparticles with a diameter of approximately 2.5–5.0 nm were fabricated prior to conversion to GaN. The Ga2O3 nanoparticles were converted to GaN in the tube furnace with NH3 flow at 900°C for 10, 30, 60, and 120 min. Depending on the conversion time, the converted GaN nanoparticle size became bigger with the increase of the conversion time. The characteristic GaN x-ray diffraction (XRD) peaks became bigger when the conversion time increased. The PL intensity drastically increased with the increase of the conversion time. The spectra profile completely overlapped for GaN samples converted for 10, 30, and 60 min, with the maximum peak at 390 nm. However, the PL spectrum slightly narrowed and red-shifted with the maximum peak at 400 nm for the GaN nanoparticles converted for 120 min.  相似文献   

9.
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109?cm?2 without AlN IL to the maximum of 1×1010?cm?2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1?x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70?meV with a?10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.  相似文献   

10.
Ba0.6Sr0.4TiO3 thin films were deposited on Pt/SiO2/Si substrate by radio frequency magnetron sputtering. High-resolution transmission electron microscopy (HRTEM) observation shows that there is a transition layer at BST/Pt interface, and the layer is about 7-8 nm thickness. It is found that the transition layer was diminished to about 2-3 nm thickness by reducing the initial RF sputtering power. X-ray photoelectron spectroscopy (XPS) depth profiles show that high Ti atomic concentration results in a thick interfacial transition layer. Moreover, the symmetry ν of ?r-V curve of BST thin film is enhanced from 52.37 to 95.98%. Meanwhile, the tunability, difference of negative and positive remanent polarization (Pr), and that of coercive field (EC) are remarkably improved.  相似文献   

11.
SUBHENDRA MOHANTY 《Pramana》2016,86(2):353-361
The BICEP2 /Keck + PLANCK joint analysis of the B-model polarization and polarization by foreground dust sets an upper bound on the tensor-to-scalar ratio of r0.05 < 0.12 at 95% CL. The popular Starorbinsky model Higgs-inflation or the conformally equivalent Higgs-inflation model allow low r values (~ 10?3). We survey the generalizations of the Starobinsky–Higgs models which would allow larger values (r ~ 0.1). The Starobinsky–Higgs inflation models require an exponential potential which can be naturally derived from SUGRA models. We show that a variation of the no-scale SUGRA model can give rise to the generalized Starobinsky models which give large r. We also examine non-standard boundary conditions which would allow a large deviation of the tensor spectral index from the slow roll values and propose that the presence of a thermal component in the tensor spectrum arises from Gibbons–Hawking temperature of the de-Sitter space.  相似文献   

12.
Recently BICEP2 collaboration has announced the detection of the primordial gravitational waves at high confidence level.In light of the results of B-modes power spectrum from BICEP2 and using the basedΛCDM,a constraint on the tensor-to-scalar ratio r=0.20+0.07-0.05(68%C.L.)can be obtained,however,this result is in apparent tension with the limit on standard inflation models from the recent PLANCK measurement,r0.11(95%C.L.).Herein we review the recent progress on the cosmological studies after BICEP2 and discuss on different ways of reconciling the tension between PLANCK and BICEP2 data.We will discuss possible modifications on the standard cosmological model,such as including the running of scalar spectral index or other cosmological parameters correlated with inflationary cosmological parameters,or tilting the primordial power spectrum at large scales by introducing a cut off which can be predicted by bouncing cosmology.We will also comment on another possibility of generating extra B-modes of CMB polarization,namely by a non-zero polarization rotation angle during its transferring from the last scattering surface.  相似文献   

13.
Superparamagnetic MFe23+O4 (M=Mn2+, Fe2+ and Co2+) inverse spinel ferrite (ISF) nanoparticles with narrow size distribution having average diameters of 6-8 nm were synthesized by a diol reduction of organic metals and the surface was modified to be hydrophilic by coating with succimer. Magnetic resonance imaging (MRI) contrast enhancement by dipolar coupling defined interactions between the synthesized ISFs and protons in the bulk water was investigated with initial susceptibility, magnetization and anisotropy of the succimer-coated ISFs. The relaxivity ratios, r2/r1, for MnFe2O4, Fe3O4 and CoFe2O4 were measured to be 12.2, 23.1 and 62.3, respectively, which demonstrate the potential usefulness of these magnetic nanoparticles as T2 contrast agents for MRI.  相似文献   

14.
Zn-doped SnO2 nanoparticles were prepared by the chemical co-precipitation route. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses of these prepared nanoparticles were carried out for structural and morphological studies. All the samples have been found to have tetragonal rutile structure of the polycrystalline SnO2 having crystallite size in the range 13–25 nm. TEM micrographs show agglomeration of nanoparticles in all the samples. At a particular temperature, the dielectric constant of all the samples has been found to decrease with increasing frequencies which may be due to rapid polarization processes occurring in SnO2 nanoparticles. The ac conductivity, σ (ω), has been found to vary with frequency according to the relation σ (ω) ∝ ωS. The value of S has been found to be temperature dependent, decreasing with increasing frequency which suggests that a hopping process is the most likely conduction mechanism in these nanoparticles. The room temperature photoluminescence (PL) spectra of the undoped and Zn-doped SnO2 nanoparticles consist of the near band-edge ultraviolet (UV) emission and the defect related visible emissions. The origin of emission peaks in the visible region is attributed to oxygen-related defects that are introduced during growth.  相似文献   

15.
We investigate the structural and electrical properties of AlxIn1xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested AlxIn1?xN/AlN/GaN/Al0.04Ga0.96N heterostructures when compared to the standard AlxIn1xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al0.04Ga0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the AlxIn1?xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible.  相似文献   

16.
In this work,we constrain the spectral index ntof the primordial gravitational wave power spectrum in a universe with sterile neutrinos by using the Planck temperature data,the WMAP 9-year polarization data,the baryon acoustic oscillation data,and the BICEP2 data.We call this model theΛCDM+r+νs+ntmodel.The additional massive sterile neutrino species can significantly relieve the tension between the Planck and BICEP2 data,and thus can reduce the possible effects of this tension on the fit results of nt.To constrain the parameters of sterile neutrino,we also utilize the Hubble constant direct measurement data,the Planck Sunyaev-Zeldovich cluster counts data,the Planck CMB lensing data,and the cosmic shear data.We find that due to the fact that the BICEP2 data are most sensitive to the multipole~150 corresponding to k~0.01 Mpc-1,there exists a strong anticorrelation between ntand r0.002in the BICEP2 data,and this further results in a strongly blue-tilt spectrum.However,a slightly red-tilt tensor power spectrum is also allowed by the BICEP2 data in the region with larger value of r0.002.By using the full data sets,we obtain meffν,sterile=0.48+0.11-0.13eV,Neff=3.73+0.34-0.37,and nt=0.96+0.48-0.63for theΛCDM+r+νs+ntmodel.  相似文献   

17.
The fluorescence and fluorescence excitation spectra of jet-cooled dinaphtho[2,1-b:1′,2′-d]furan (dinaphthofuran) molecules, as well as their complexation with inert gases Ar, Kr, and Xe, are studied. The indicatrices of the degree of polarization of fluorescence of dinaphthofuran molecules upon excitation of the electronic transitions S 0?S 1 and S 0?S 2 are calculated as functions of the intramolecular orientation of the transition dipole moments. The fluorescence polarization spectrum is measured under excitation within the rotational contour of the line of the purely electronic transition v 0 0 = 29 294 cm?1. In contrast to complex planar molecules, the S 0?S 2 fluorescence excitation spectrum of dinaphthofuran is found to be continuous, with the Q branch of the rotational contour being absent. The fluorescence excitation spectra of van der Waals complexes of dinaphthofuran with inert gases exhibit multiplet lines, which is associated with the helical structure of the molecules studied.  相似文献   

18.
The fluorescence excitation spectra of jet-cooled carbazole molecules at vibrational temperatures of 55 and 80 K and the fluorescence spectrum of these molecules excited by radiation at the frequency of a pure electronic transition are measured. As the vibrational temperature increases, the excitation spectra exhibit a series of lines of the same symmetry, which are caused by the interaction of the active vibration with a subensemble of optically inactive vibrations. The final symmetry of the totally and nontotally symmetric vibrations is determined from the shape of the rotational contours of the lines of vibronic transitions. The values of a decrease in the frequency of the nontotally symmetric vibrations in the first excited electronic state S 1 due to their interaction with the electronic state S 2 are calculated to be up to 100 cm?1. The frequencies of the pure electronic transitions in the absorption and fluorescence spectra coincide with each other and are equal to 30809 cm?1, the frequencies of vibrations in the ground state S 0 exceeding the frequencies of the corresponding vibrations in the excited state S 1. The degree of polarization of the integral fluorescence is determined for a series of vibronic transitions of the a 1 and b 2 final symmetry that are observed in the fluorescence excitation spectra, and the contribution of the intensity with the borrowed polarization θ to the integral fluorescence is calculated. It is found that the intensity θ is higher for the transitions of the b 2 symmetry and can reach ≈50%.  相似文献   

19.
The effects of alternating electric field on the fatigue behaviors of poly(vinylidene fluoride-trifluoroethylene) copolymer films were investigated. The value of the remanent polarization (Pr) reached a maximum with the increase of cycle number of alternating electric filed, and then decreased as observed from the curve of polarization vs. switching cycles. It was found that the maximum point is associated with the frequency of alternating electric field. Dual effects, i.e., polarization enhancement and degradation, were supposed to coexist during the process of fatigue. A model considering the two effects was proposed to describe the fatigue behaviors, and the simulated data fit well with the experimental data.  相似文献   

20.
The energies of the six circular transitions (n = 13 → n = 12 through n = 8 → n = 7) of the K?Pb exotic atom have been measured to high precision (typically ~ 50 ppm) using Ge (Li) spectrometers. The data acquisition system was computer controlled and stabilized, the energy calibration spectrum was taken simultaneously with the data spectrum. The experimental energies of the six transitions were corrected for ADC nonlinearities and data-calibration spectrum shifts, as well as the presence of unresolved noncircular transition contaminants. The energies of five of the transitions (13 → 12 through 9 → 8) were computed from quantum electrodynamics, including all significant orders of vacuum polarization, electron screening and nuclear polarization. The mass of the K? was adjusted to achieve a best fit with the experimental energies: the result was mK? = 493.657 ± 0.020 MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号