首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.  相似文献   

2.
We report on the investigation of the origin of high oxide to nitride polishing selectivity of ceria-based slurry in the presence of picolinic acid.The oxide to nitride removal selectivity of the ceria slurry with picolinic acid is as high as 76.6 in the chemical mechanical polishing.By using zeta potential analyzer,particle size analyzer,horizon profilometer,thermogravimetric analysis and Fourier transform infrared spectroscopy,the pre-and the post-polished wafer surfaces as well as the pre-and the post-used ceria-based slurries are compared.Possible mechanism of high oxide to nitride selectivity with using ceria-based slurry with picolinic acid is discussed.  相似文献   

3.
Abrasive is one of key influencing factors on the surface quality during the chemical mechanic polishing (CMP). α-Alumina particles, as a kind of widely used abrasive in CMP slurries, often cause to surface defects because of its high hardness. In the present paper, a series of novel alumina/silica core-shell abrasives in slurries were described. The CMP performances of the alumina/silica core-shell abrasives on hard disk substrate were investigated by using a SPEEDFAM-16B-4M CMP equipment. Experimental results indicate that the CMP performances are strong dependent on the coated SiO2 content of the alumina/silica composite abrasives. Slurries containing the alumina/silica composite abrasives exhibited lower surface roughness and waviness as well as lower topographical variations and less scratch than that containing pure alumina abrasive under the same testing conditions.  相似文献   

4.
无损伤超光滑LBO晶体表面抛光方法研究   总被引:1,自引:0,他引:1  
李军  朱镛  陈创天 《光学技术》2006,32(6):838-841
传统的抛光LBO晶体的方法是选用金刚石抛光粉在沥青抛光盘上抛光。沥青盘易于变形不容易修整,金刚石粉特别硬容易损伤抛光晶体表面。抛光过程中,抛光盘和抛光粉的选择是非常重要的,直接影响到抛光效率和最终的表面质量。新的抛光LBO晶体的方法,其抛光过程是一个化学机械过程,抛光盘、抛光粉和抛光材料相互作用。选用两种抛光盘(培纶和聚氨酯盘),三种较软的抛光磨料(CeO2,Al2O3和SiO2胶体),并在LBO晶体的(001)面进行抛光实验。用原子力显微镜测量和分析了表面粗糙度。结果表明,使用聚氨酯盘和SiO2胶体能够获得无损伤超光滑的LBO晶体表面,其表面粗糙度的RMS为0.3nm。  相似文献   

5.
It was found material removal rate (MRR) sharply increased from 250 to 675 nm/min as the concentration decreased from 1 to 0.25 wt% in optical glass chemical mechanical polishing (CMP) using ceria slurries. Scanning electron microscopy was employed to characterize the ceria abrasive used in the slurry. Atomic force microscopy results showed good surface had been got after CMP. Schematic diagrams of the CMP process were shown. Furthermore, the absorption spectra indicated a sudden change from Ce4+ to Ce3+ of the ceria surface when the concentration decreased, which revealed a quantum origin of the phenomenon.  相似文献   

6.
During the final stages of polishing silicon wafers, much of the interactions between silicon and diamond abrasive takes place at the silicon asperities. These interactions, leading to material removal, were investigated in a MD simulation of polishing of a silicon wafer with a diamond abrasive under dry conditions. Simulations were conducted with silicon asperities of different geometries, different abrasive configurations, and polishing speeds. Under the conditions of polishing, the silicon atoms from the asperities were found to bond chemically to the surface of the diamond abrasive. Continued transverse motion of the diamond abrasive (relative to the silicon asperity) leads to tensile pulling, necking, and ultimate separation of the silicon asperity material instead of conventional material removal in polishing (chip formation) involving cutting/ploughing, which takes place in the absence of chemical bonding between the abrasive and the asperity material. This phenomenon has not been reported previously in the literature. The thrust and cutting forces initially increase due to the increase in the number of asperity atoms affected finally reaching a maximum. This is followed by a decrease of these forces due to tensile pulling and formation of individual strings followed by ultimate separation or breakage of the final string. The ratio of thrust force (F z ) to the cutting force (F x ), i.e. |(F z /F x )| was found to increase continuously to a maximum of ~0.8 followed by continuous decrease to ~0.25. This is in contrast to a more or less constant value of ~2 in the case of tools with rounded radii or tools with large negative rake angles, where material is removed in the form of chips ahead of the tool. Three regions of the asperity have been identified that are useful in the development of a phenomenological model for polishing that enables computation of material removal rates: (1) the region directly in front of the abrasive for which the probability of the removal of an asperity atom is close to unity, (2) the distant region where this probability is nearly zero, and (3) an intermediate region from which the probability of removal is close to half.  相似文献   

7.
The as-cutted sapphire wafers are planarized by the grinding and polishing two-step machining processes with micrometer B4C and nanometer silica as abrasives, respectively. The material removal rates (MRRs) of two processes are measured. During the polishing process, the MRR increases with the down-pressure increased, whereas the rotational speeds have less effect on the MRR. The alkaline colloidal silica is more favorable than the acidic to polish sapphire wafer. The ground and polished surfaces of the substrate are compared by scanning electron microscopy, atomic force microscopy, and X-ray rocking curves. Our results show that B4C abrasives are effective in elimination of the ununiformity in thickness within a wafer. The colloidal silica can achieve a nanoscale flatness of wafer, but the lasting polishing time seems unfavorable. The polishing process is also analyzed in terms of chemical mechanical polishing mechanism.  相似文献   

8.
本文通过用五种散粒磨料(碳化硅)、五种固着磨料(金刚石)对八大类常用光学玻璃进行加工,用扫瞄电子显微镜观察其表面形貌,用抛测法测出其破坏层深度,得出一系列破坏层的深度数值,从而找出破坏层与磨料之问的函数关系。以破坏层的绝对深度为依据,得出光学加工中精磨、抛光工序的加工余量的合理匹配值。  相似文献   

9.
The effect of thermal annealing on the optical and physicochemical properties of hydrogenated silicon nitride films was studied. These films were deposited by plasma-enhanced chemical vapor deposition from a mixture of silane, ammonia, and nitrogen. Subsequently, the films were annealed at various temperatures ranging from 400°C to 1000°C. The properties of the films were studied using ellipsometry and Fourier transform infrared spectroscopy. The Maxwell Garnet model considers the silicon nitride material as heterogeneous with three distinct phases: silicon, stoichiometric silicon nitride, and hydrogen. Based on the ellipsometric analysis, the annealing treatment leads to reduce the volume fraction of both hydrogen and silicon. As a result, the stoichiometry parameter significantly increases from 1.24 to 1.32 making it closer to the stoichiometric silicon nitride one. According to the infrared data, a noticeable decrease in the total hydrogen concentration in the films was obtained with respect to the annealing temperature.  相似文献   

10.
Nanopolishing of silicon wafers using ultrafine-dispersed diamonds   总被引:1,自引:0,他引:1  
In the present study, two new methods are proposed for the polishing of silicon wafers using ultrafine-dispersed diamonds (UDDs). The first proposed polishing method uses a polishing tool with an ultrafine abrasive material made through the electrophoretic deposition of UDDs onto a brass rod. Dry polishing tests showed that the surface roughness of the silicon wafer was reduced from Ra=107 to 4 nm after polishing for 30 min. The second method uses a new polishing pad with self-generating porosity. By polishing with the new pad in combination with the polycrystalline UDD in a water suspension, it is possible to achieve the specified surface roughness of the silicon wafer much faster than when using a conventional pad made of foamed polyurethane. The tests showed that the surface roughness of the silicon wafer was reduced from Ra=107 to 2 nm after polishing for 90 min.  相似文献   

11.
Very thin (nanometric) silicon layers were grown in between silicon nitride barriers by SiH2Cl2/H2/NH3 plasma-enhanced chemical vapor deposition (PECVD). The multilayer structures were deposited onto fused silica and silicon substrates. Deposition conditions were selected to favor Si cluster formation of different sizes in between the barriers of silicon nitride. The samples were thermally treated in an inert atmosphere for 1 h at 500 °C for dehydrogenation. Room-temperature photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical properties of the structures. UV-VIS absorption spectra present two band edges. These band edges are well fitted by the Tauc model typically used for amorphous materials. RT-PL spectra are characterized by strong broad bands, which have a blue shift as a function of the deposition time of the silicon layer, even for as-grown samples. The broad luminescence could be associated with the confinement effect in the silicon clusters. After annealing of the samples, the PL bands red shift. This is probably due to the thermal decomposition of N-H bonds with further effusion of hydrogen and better nitrogen passivation of the nc-Si/SiNx interfaces.  相似文献   

12.
The manufacture of microelectronic devices based on silicon technology is largely dominated by wet chemical processes. By ultraclean sample preparation in air and a fast transfer into UltraHigh Vacuum (UHV) we open up a way for the atomic-scale structural and chemical characterization of silicon surfaces immediately after wet-chemical processing. Using Scanning Tunneling Microscopy (STM), ThermoDesorption (TDS) and InfraRed Spectroscopy (IRS), we find that a surface termination predominantly by hydrogen results from all the different wet-chemical treatments investigated (etching with hydrofluoric acid, rinsing with hot water, chemomechanical polishing)-despite the different chemical ambients and process parameters involved. Microscopically, a crystallographically preferential attack of the silicon is observed in all these processes which results, to a different extent, in anisotropic defect structures on the surfaces. This is explained by an interplay of aqueous reaction kinetics and sterical hindrance on the silicon surface. It is pointed out how a UHV surface analysis of the micromorphology of wet-chemically treated silicon surfaces, so far carried out mostly on Si(111) due to its easier preparation and experimental accessability, may help to provide the in-depth understanding of the atomic-scale mechanisms during wet-chemical processing demanded by the progressing miniaturization of microelectronic devices. The atomically smoother and chemically more homogeneous Si(111) obtained after preferential etching with NH4F suggests that in future applications Si(111) may gain importance over Si(100), which still dominates in today's semiconductor technology, since future devices increasingly rely on tailor-made and ideal properties on an atomic scale. Due to their structural and chemical simplicity and well-controlable characteristics, H-teminated surfaces after wet-chemical preparation also form ideal substrates for conventional UHV surface studies such as absorption and MBE-growth experiments.  相似文献   

13.
To improve their chemical mechanical polishing (CMP) performance, ceria nanoparticles were surface modified with γ-aminopropyltriethoxysilane (APS) through silanization reaction with their surface hydroxyl group. The compositions, structures and dispersibility of the modified ceria particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), laser particle size analyzer, zeta potential measurement and stability test, respectively. The results indicated that APS had been successfully grafted onto the surface of ceria nanoparticles, which led to the modified ceria nanoparticles with better dispersibility and stability than unmodified ceria particles in aqueous fluids. Then, CMP performance of the modified ceria nanoparticles on glass substrate was investigated. Experimental results showed that the modified ceria particles exhibited lower material removal rate (MRR) but much better surface quality than unmodified ceria particles, which may be explained by the hardness reduction of ceria particles, the enhancement of lubrication of the particles and substrate surfaces, and the elimination of the agglomeration among the ceria particles.  相似文献   

14.
The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 μm × 15 μm area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum (380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment.  相似文献   

15.
Ceria plays an important role in catalysis, due to its ability to store and release oxygen depending on the condition present in the catalyst environment. To analyze the role of ceria in catalytic reactions, it is necessary to know the details of the interaction of ceria surface with environmentally sensitive molecules. This study was conducted using ultra accelerated quantum chemical molecular dynamics. Its purpose was to investigate the reduction process of the (1 1 1) and (1 1 0) surfaces of ceria with atomic hydrogen as well as water desorption mechanisms from the surfaces. This simulation demonstrated that when a high-energy colliding hydrogen atoms are adsorbed on the ceria, it pulls up an O atom from the ceria surfaces and results in the formation of a H2O molecule. This is the first dynamics simulation related to such reduction processes based on quantum chemistry.  相似文献   

16.
In this study the surface behavior during its contact with the abrasive grain in the glass lapping process was studied using practical simulation which is the scratch test and the real contact between glass surfaces and α-alumina abrasive grains during lapping process. Formations and dimensions of the produced scratches were investigated to explain the grain action on the surface and the glass material removal rate. It has been found that humid environment created by the use of the slurry of loose abrasives causes more significant damages than the dry one. The use of slurry produces higher glass material removal rate in this environment and proves its utility in the lapping process. The shape of abrasive grains influences the nature of their action. Indeed, the worn grains produce scratches and chippings less than the sharp grains. During lapping, the number of scratches and theirs dimensions depend on the contact time and the abrasive grain size. It was concluded that the glass material removal rate during lapping depends on the cumulative actions of individual grains which produce scratches and chippings.  相似文献   

17.
刘文俊  杨炜  郭隐彪 《强激光与粒子束》2018,30(8):082001-1-082001-6
为了克服游离磨粒抛光的随机性、磨料浪费以及产生的水合层等问题,提出了一种无水环境下熔融石英玻璃固结磨粒抛光技术。研究实现了稳定的抛光轮烧结工艺,并应用于熔融石英玻璃抛光加工,通过对加工产物和抛光轮粉末进行EDS能谱分析和XRD衍射分析,从微观上初步阐述了固结磨粒抛光的去除机理;从宏观上探索压力和转速对去除效率和表面粗糙度的影响。实验结果表明:加工过程中,在法向力和剪切力作用下,CeO2磨粒和熔融石英发生化学反应,CeO2将SiO2带出玻璃,实现材料去除;同时,压力和转速对加工效率影响并不遵循Preston公式,温升和排屑成为决定去除效率的关键。  相似文献   

18.
We report the improvements in wetting characteristics of silicon-based materials with copper electrolyte by various surface treatments to achieve uniform and void free copper deposition in high aspect ratio through-via electroplating. The contact angles of samples such as native silicon, thermally oxidized silicon, silicon nitride, deep reactive ion etched silicon etc, with copper electrolyte, were measured before and after the surface treatments. The wetting of copper electrolyte with silicon nitride coated silicon samples was found to be more than that with thermally oxidized samples. Due to its better wettability, silicon nitride was later used as an insulating layer instead of commonly used silicon oxide in the electroplating experiments. After the SC1 wet surface treatment, the contact angles of all the samples were found to be significantly lower, thus making the surface more suitable for electroplating applications. X-ray photoelectron spectroscopy results verified the presence of polar functional groups on the samples surface, which has helped to improve wetting with copper electrolyte. The conclusions drawn by the experimental results were employed in the high aspect ratio through-via copper electroplating; and void free copper interconnects, having aspect ratio as high as 20, were fabricated.  相似文献   

19.
Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP.  相似文献   

20.
Hydrogen cyanide (HCN) aqueous solutions can remove copper contaminants from Si surfaces more effectively than hydrochloric acid/hydrogen peroxide mixture (HPM) and sulfuric acid/hydrogen peroxide mixture (SPM). When pH of the HCN solutions is adjusted at 9, Si surface morphology is not changed, while when pH exceeds 10, the Si surfaces are considerably roughed. AFM measurements show that Cu contaminants are present in the form of particles on the bare Si surfaces. XPS measurements show that the particles consist of metallic Cu. The Cu particle height decreases almost linearly with the cleaning time, and the Cu surface concentration decreases exponentially with it. It is concluded that Cu particles gradually dissolve into the HCN aqueous solutions by the direct reaction with cyanide ions at the surface of the Cu particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号