首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of Nd:YAG laser, operating at 266 nm wavelength and a pulse duration of 40 ps, with AISI 1045 steel was studied. Surface damage threshold was estimated to be 0.14 J/cm2. The steel surface modification was studied at the laser fluence of ∼1.0 J/cm2. The energy absorbed from Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following AISI 1045 steel surface morphological changes and processes were observed: (i) intensive damage of the target in the central zone of irradiated area; (ii) appearance of periodic surface structures at nano-level, with periodicity in agreement with the used wavelength; (iii) reduction of oxygen concentration in irradiated area; and (iv) development of plasma in front of the target. Generally, interaction of laser beam with AISI 1045 steel (at 266 nm) results in a near-instantaneous creation of damage, meaning that large steel surfaces can be modified in short times.  相似文献   

2.
A study of silicon modification induced by a high intensity picosecond Nd:YAG laser, emitting at 1064 nm, is presented. It is shown that laser intensities in the range of 5 × 1010-0.7 × 1012 W cm−2 drastically modified the silicon surface. The main modifications and effects can be considered as the appearance of a crater, hydrodynamic/deposition features, plasma, etc. The highest intensity of ∼0.7 × 1012 W cm−2 leads to the burning through a 500 μm thick sample. At these intensities, the surface morphology exhibits the transpiring of the explosive boiling/phase explosion (EB) in the interaction area. The picosecond Nd:YAG laser-silicon interaction was typically accompanied by massive ejection of target material in the surrounding environment. The threshold for the explosive boiling/phase explosion (TEB) was estimated to be in the interval 1.0 × 1010 W cm−2 < TEB ≤ 3.8 × 1010 W cm−2.  相似文献   

3.
Interaction of an Nd:YAG laser, operating at 1064 or 532 nm wavelength and pulse duration of 40 ps, with titanium implant was studied. Surface damage thresholds were estimated to 0.9 and 0.6 J/cm2 at wavelengths 1064 and 532 nm, respectively. The titanium implant surface modification was studied by the laser beam of energy density of 4.0 and 23.8 J/cm2 (at 1064 nm) and 13.6 J/cm2 (at 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium/implant surface morphological changes were observed: (i) both laser wavelengths cause damage of the titanium in the central zone of the irradiated area, (ii) appearance of a hydrodynamic feature in the form of resolidified droplets of the material in the surrounding outer zone with the 1064 nm laser wavelength and (iii) appearance of wave-like microstructures with the 532 nm wavelength. Generally, both laser wavelengths and the corresponding laser energy densities can efficiently enhance the titanium/implant roughness. This implant roughness is expected to improve its bio-integration. The process of the laser interaction with titanium implant was accompanied by formation of plasma.  相似文献   

4.
Laser surface hardening makes use of the rapid and cooling cycles produced on metals surfaces exposed to a scanning laser beam without affecting the bulk of the sample. Mechanical and chemical properties of the surface can be enhanced through the metallurgical transformations that take place during the mentioned thermal cycles. Steels and cast irons are the usual materials to be hardened by laser and recently the high power diode lasers (HPDL) became the appropriate tool to carry out this process. In this work, some systematic experiments have been carried out to harden AISI 1045 surface samples by a cw (HPDL) working at different power levels (470, 760 W). The main processing parameters (scanning velocity and density power of the laser beam) were tuned from the prediction realized by the numerical (ANSYS) analysis of the heat conduction involved in the process. Such analysis allowed us to put in evidence the variation of the temperature and the cooling rate of the steel sample surface, affecting the uniformity of the demanding mechanical properties of the surface. In this way, a close-loop temperature control of the surface was justified in order to keep the hardness value within the range required. The formation of martensite phase in the laser treated superficial zone confirmed the hardening of the steel.  相似文献   

5.
Creation of laser-induced morphology features, particularly laser-induced periodic surface structures (LIPSS), by a 532 nm picosecond Nd:YAG laser on crystalline silicon is reported. The LIPSS, often termed ripples, were produced at average laser irradiation fluences of 0.7, 1.6, and 7.9 J cm−2. Two types of ripples were registered: micro-ripples (at micrometer scale) in the form of straight parallel lines extending over the entire irradiated spot, and nano-ripples (at nanometer scale), apparently concentric, registered only at the rim of the spot, with the periodicity dependent on laser fluence. There are indications that the parallel ripples are a consequence of the partial periodicity contained in the diffraction modulated laser beam, and the nano-ripples are very likely frozen capillary waves. The damage threshold fluence was estimated at 0.6 J cm−2.  相似文献   

6.
We demonstrate a high power continuous wave (CW) diode-side-pumped Nd:YAG laser operating at 1123 nm with a plano-plano configuration. By means of precise coating, a single 1123 nm wavelength is achieved. Under the pump power of 1080 W, an output power of 219.3 W is obtained, which corresponds to an optical-optical conversion efficiency of 20.3%. To the best of our knowledge, this is the highest output power for CW 1123 nm laser based on Nd:YAG crystal.  相似文献   

7.
A Nd:YAG laser pumped by a Kr-flashlamp with simultaneous dual-wavelength operation at 1357 nm (4F3/2 → 4I13/2(R1 → X4)) and 1444 nm (4F3/2 → 4I13/2(R1 → X7)) is demonstrated and its characteristics was analyzed. The output energy of 82 mJ at 1357 nm and 138 mJ at 1444 nm were achieved simultaneously with the maximum electrical input energy of 44 J. Stability of the output energy in the dual-wavelength operation was 1.41% at the maximum input energy of 44 J. However, the stabilities at each wavelength in the dual-wavelength operation showed much lower stability.  相似文献   

8.
Laser-induced modifications on platinum (Pt) and silicon (Si) are compared by considering the development of various features on the irradiated surface. The experiments were carried out both in air and under vacuum. The interaction of 50 pulses of 1064 nm Nd:YAG laser with both targets in air resulted in non-linear phenomena. The periphery of the irradiated spot on the Pt surface exhibits wave-like patterns with a featureless central portion. A non-uniform distribution of cones of different sizes is also observed on the irradiated surface. In the case of silicon, the laser-induced periodic surface structures along with the formation of micro-column, rectangular blocks and grid are prominently observed features. However, when both the targets were irradiated with the same number of shots under vacuum (~10?3 Torr), the surface morphologies of both the targets exhibited the hydrodynamic sputtering but with more explosive expulsion in Pt when compared with silicon. In platinum, there is a periodic variation in the distance between adjacent cones formed in various ablated zones. The Gaussian beam mode TEM00 provided the evidences for melt pool formation in silicon when irradiated under vacuum. Additionally, we observed other mechanisms including splashing, sputtering, burning, re-solidification and redeposition on the surface of irradiated targets.  相似文献   

9.
532 nm Nd:YAG激光的高效多波长受激喇曼转化   总被引:1,自引:0,他引:1       下载免费PDF全文
 Nd:YAG二倍频激光(532 nm)泵浦H2中的受激喇曼散射产生多级斯托克斯。其中一级、二级和三级斯托克斯的最高量子转换效率分别可达66%,60%和19%。在0.44 MPa下,可同时获得1 579 nm(19%),954 nm(30%),683 nm(33%),532 nm(14%),436 nm(3.7%)和368 nm(1.4%)的多波长输出。H2压力对多级斯托克斯转换有显著影响:高气压有利于产生高效的一级斯托克斯,而低气压则适合于高级斯托克斯和反斯托克斯的产生。  相似文献   

10.
We report on to our knowledge the first time a diode-side-pumped simultaneous dual-wavelength Nd:YAG laser at 1116 and 1123 nm. By inserting an etalon to balance the gain and loss, a stable dual-wavelength oscillation is acquired. The numerical simulations for wavelength tuning are discussed by principles of laser threshold and Fabry-Perot etalon. Under the pump power of 250 W, a total output power of 23 W is obtained. Meanwhile, the two components have approximately equal intensities. The beam quality of M2 factor was measured to be 7.52.  相似文献   

11.
Laser ablation of nickel, gold and copper thin film on glass substrates has been investigated using a nanosecond pulsed Nd:YAG laser operating at 355 nm in air with a Gaussian intensity profile. The exact beam profile was measured through mechanical scanning with a photodiode. A small beam defect was observed, which can affect the machining performance at higher pulse energies. The ablation thresholds of the films were calculated from the crater diameter values. The effect of the pulse repetition rate and the film thickness was also studied. At high pulse repetition rates heat accumulation was observed and the ablation threshold decreased with the film thickness. Both cases resulted in higher diameters.  相似文献   

12.
HighpowerNd:YAGslablasersidepumpedbydiodelaserarrayCHENYouming;ZHOUFuzheng;HUWentao;LIZhishen;YANGXiangchun;WangZhijiang(Shan...  相似文献   

13.
刘欢  王巍  巩马理 《物理学报》2013,62(14):144205-144205
报道了一种适合中小功率输出的全固态激光器的角抽运方法, 抽运光从板条激光器中板条晶体的角部入射, 可获得较高的抽运效率和较好的抽运均匀性.采用单角抽运方式, 首次进行了角抽运Nd:YAG复合板条946 nm连续运转激光器的实验研究. 激光腔采用紧凑型平凹直腔结构, 腔长仅为20 mm. 当注入抽运功率为50 W时, 946 nm激光连续输出功率最高达5.29 W, 光光转换效率为10.6%, 斜效率为12%. 整台激光器结构紧凑, 调谐简单, 成本低, 具有广阔的应用前景. 关键词: 角抽运 Nd:YAG晶体 连续波 946 nm激光  相似文献   

14.
A Nd:CNGG laser operated at 935 nm and 1061 nm pumped at 885 nm and 808 nm, respectively, is demonstrated. The 885 nm direct pumping scheme shows some advantages over the 808 nm traditional pumping scheme. It includes higher slope efficiency, lower threshold, and better beam quality at high output power. With the direct pumping, the slope efficiency increases by 43% and the threshold decreases by 10% compared with traditional pumping in the Nd:CNGG laser operated at 935 nm. When the Nd:CNGG laser operates at 1061 nm, the direct pumping increases the slope efficiency by 14% with a 20% reduction in the oscillation threshold.  相似文献   

15.
利用Nd:YAG纳秒激光(波长为1064 nm)在不同气氛(空气、N2,真空)中对单晶硅进行累积脉冲辐照,研究了表面微结构的演化情况.在激光辐照的初始阶段,与532和355 nm纳秒脉冲激光在硅表面诱导出波纹结构不同,1064 nm脉冲激光诱导出了微孔结构和折断线结构,并且硅的晶面取向不同,相应的折断线结构也不同.对于Si(111)面,两条折线交角为120°或60°,形成网状;而对于Si(100)面,两条折断线正交,从而将表面分成了15—20 μm的矩形块.结果表明,微孔结构的生长过程主要与相爆炸有关,而折断线的形成主要是热应力作用的结果.不同气氛对微结构形成的影响表明,刻蚀率和生长率与微结构的形成有密切的关系. 关键词: 纳秒激光 硅的微结构 相爆炸 热应力  相似文献   

16.
Thin surface layers consisting of nano-crystalline and amorphous phases on the surface of stainless steel have been attained under the Nd:YAG pulsed laser irradiation. The phases and microstructures were investigated by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). The phase compositions of the surface determined by XRD were α-Fe (ferrite) and γ-Fe (austenite) or only γ-Fe in the near surface region on the bases of the different laser power densities. The nano-crystalline grains with sizes of 4-100 nm could result from high cooling rate and crystallization in amorphous region by homogeneous and heterogeneous nucleation. The formation of the amorphous phase was attributed to the higher cooling rates.  相似文献   

17.
The high efficient laser performance of self-Q-switched laser in the co-doped Cr4+,Nd3+:YAG microchip with 1.8 mm thickness was demonstrated. The slope efficiency is varied with the reflectivity of output coupler at 1064 nm, and the highest slope efficiency of 26% was obtained for 95% reflectivity of output coupler at 1064 nm. The pulse width, the single pulse energy and the pulse repetition rate for different reflectivity of the output couplers were measured, and the experimental results agree with the numerical calculations of the passively Q-switched rate equations. This can lead to develop the diode laser pumped monolithic self-Q-switched solid-state microchip lasers, especially for the intracavity frequency-doubled solid-state microchip lasers.  相似文献   

18.
郭晶华  邹群 《光学学报》1991,11(3):24-229
用KNbO_3和KTP两种晶体对ps的Nd:YAG激光倍频,从理论分析和实验上进行了倍频效率比较,用3mm的KNbO_3和4.5mm的KTP得到倍频效率分别为52%和45.4%。证明KNbO_3倍频效率高于KTP,但由于KNbO_3的温度特性使得应用上不如KTP方便。  相似文献   

19.
This paper reports on the characterization of a diode-side-pumped CW Nd:YAG laser. A side-pumped configuration with 9 laser diodes is used for the laser. Pump light is directly coupled into the Nd:YAG rod without focusing lenses and the pump light distribution in the Nd:YAG rod was calculated. A maximum output power of 150 W in multimode operation is obtained for a pumping power of 400 W. The optical–optical efficiency is 37%. Output power of the laser under different output couplers, resonator lengths and temperatures of the cooling water have been studied.  相似文献   

20.
研制了五组双线二极管列阵侧面泵浦Nd: YAG棒的高效率、高功率激光头。将一块90° 石英旋光片插入两个这样的激光头中间并置入热近非稳对称平平腔,产生了1157 W高光束质量(M2 ~ 39)1064 nm连续波输出,据我们所知,这是侧面泵浦双棒Nd: YAG激光器产生的最高功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号