首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the formation of a stable (4 × 1) reconstruction of the chalcopyrite CuGaSe2(0 0 1) surface. Using Ar+ ion-bombardment and annealing of epitaxial CuGaSe2 films grown on GaAs(0 0 1) substrates it was possible to obtain flat, well-ordered surfaces showing a clear (4 × 1) reconstruction. The cleanliness and structure were analyzed in situ by AES and LEED. AES data suggest a slight Se-enrichment and Cu-depletion upon surface preparation. Our results demonstrate that (0 0 1) surfaces of the Cu-III-VI2(0 0 1) material can show stable, unfacetted surfaces.  相似文献   

2.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

3.
CdTe thin films were grown on GaAs (1 0 0) substrates by using molecular beam epitaxy at various temperatures. The bright-field transmission electron microscopy (TEM) images and the high-resolution TEM (HRTEM) images showed that the crystallinity of CdTe epilayers grown on GaAs substrates was improved by increasing the substrate temperature. The result of selected-area electron diffraction pattern (SADP) showed that the orientation of the grown CdTe thin films was the (1 0 0) orientation. The lattice constant the strain, and the stress of the CdTe thin film grown on the GaAs substrate were determined from the SADP result. Based on the SADP and HRTEM results, a possible atomic arrangement for the CdTe/GaAs heterostructure is presented.  相似文献   

4.
Photoelectron spectroscopy, low-energy electron diffraction, and scanning probe microscopy were used to investigate the electronic and structural properties of graphite layers grown by solid state graphitization of SiC(0 0 0 1) surfaces. The process leads to well-ordered graphite layers which are rotated against the substrate lattice by 30°. On on-axis 6H-SiC(0 0 0 1) substrates we observe graphitic layers with up to several 100 nm wide terraces. ARUPS spectra of the graphite layers grown on on-axis 6H-SiC(0 0 0 1) surfaces are indicative of a well-developed band structure. For the graphite/n-type 6H-SiC(0 0 0 1) layer system we observe a Schottky barrier height of ?B,n = 0.3 ± 0.1 eV. ARUPS spectra of graphite layers grown on 8° off-axis oriented 4H-SiC(0 0 0 1) show unique replicas which are explained by a carpet-like growth mode combined with a step bunching of the substrate.  相似文献   

5.
Porous GaAs layers were formed by electrochemical etching of p-type GaAs(1 0 0) substrates in HF solution. A surface characterization has been performed on p-type GaAs samples using X-ray photoelectron spectroscopy (XPS) technique in order to get information about the chemical composition, particularly on the surface contamination. According to the XPS spectra, the oxide layer on as-received porous GaAs substrates contains As2O3, As2O5 and Ga2O3. Large amount of oxygen is present at the surface before the surface cleaning.Compared to untreated GaAs surface, room temperature photoluminescence (PL) investigations of the porous layers reveal the presence of two PL bands: a PL peak at ∼871 nm and a “visible” PL peak at ∼650-680 nm. Both peak wavelengths and intensities varied from sample to sample depending on the treatment that the samples have undergone. The short PL wavelength at 650-680 nm of the porous layers is attributed to quantum confinement effects in GaAs nano-crystallites. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-sized crystallites were observed on the porous GaAs surface. An estimation of the mean size of the GaAs nano-crystals obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results.  相似文献   

6.
We have investigated the oxidation behavior of MBE grown epitaxial Y(0 0 0 1)/Nb(1 1 0) films on sapphire substrates at elevated temperatures under atmospheric conditions with a combination of experimental methods. At room temperature X-ray diffraction (XRD) reveals the formation of a 25 Å thick YOxHx layer at the surface, while simultaneously oxide growth proceeds along defect lines normal to the film plane, resulting in the formation of a single crystalline cubic Y2O3 (2 2 2) phase. Furthermore, nuclear resonance analysis (NRA) reveals that hydrogen penetrates into the sample and transforms the entire Y film into the hydride YH2 phase. Additional annealing in air leads to further oxidation radially out from the already existing oxide channels. Finally material transport during oxidation results in the formation of conically shaped oxide precipitations at the surface above the oxide channels as observed by atomic force microscopy (AFM).  相似文献   

7.
R. Armitage  J. Suda  T. Kimoto 《Surface science》2006,600(7):1439-1449
ZrB2(0 0 0 1) crystals grown by the rf-floating zone technique were characterized by X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and atomic force microscopy. These characteristics were investigated as a function of thermal cleaning temperature up to 1000 °C in vacuum for as-received substrates as well as substrates treated ex situ in HF aqueous solution. The HF treatment process removed the ZrO2 native oxide layer present on as-received substrates and resulted in ZrB2(0 0 0 1) surfaces exhibiting long-range order. Upon annealing the HF-treated surface in high vacuum, two types of reconstructions were observed: an incommensurate reconstruction from 650 to 900 °C related to residual H2 gas, and n × n reconstructions at 1000 °C, possibly related to oxygen.  相似文献   

8.
Formation of self-assembled InAs 3D islands on GaAs (1 1 0) substrate by metal organic vapor phase epitaxy has been investigated. Relatively uniform InAs islands with an average areal density of 109 cm−2are formed at 400 ° C using a thin InGaAs strain reducing (SR) layer. No island formation is observed without the SR layer. Island growth on GaAs (1 1 0) is found to require a significantly lower growth temperature compared to the more conventional growth on GaAs (1 0 0) substrates. In addition, the island height is observed to depend only weakly on the growth temperature and to be almost independent of the V/III ratio and growth rate. Low-temperature photoluminescence at 1.22 eV is obtained from the overgrown islands.  相似文献   

9.
We present a detailed investigation of the electronic properties of C60 grown on GaAs(1 0 0) substrates, as a function of the fullerene coverage, from the very early stages of interface formation up to the development of a bulk-like fullerene film. We monitor the chemical interactions and the energy levels alignment by means of X-rays, ultraviolet and inverse photoemission spectroscopies. The two latter techniques allow to investigate the electronic structure close to the Fermi level. Energy levels alignment at the interfaces of C60 with p-doped and GaAs(1 0 0) are obtained and discussed.  相似文献   

10.
Atomic layer deposition (ALD) of zinc oxide (ZnO) films on (0 0 0 1) sapphire substrates was conducted at low temperatures by using diethyl-zinc (DEZn) and nitrous oxide (N2O) as precursors. It was found that a monolayer-by-monolayer growth regime occurred at 300 °C in a range of DEZn flow rates from 5.7 to 8.7 μmol/min. Furthermore, the temperature self-limiting process window for the ALD-grown ZnO films was also observed ranging from 290 to 310 °C. A deposition mechanism is proposed to explain how saturated growth of ZnO is achieved by using DEZn and N2O. Transmission spectroscopic studies of the ZnO films prepared in the self-limiting regime show that the transmittances of ZnO films are as high as 80% in visible and near infrared spectra. Experimental results indicate that ZnO films with high optical quality can be achieved by ALD at low temperatures using DEZn and N2O precursors.  相似文献   

11.
We have studied the surface atomic structure of GaAs(6 3 1), and the GaAs growth by molecular beam epitaxy (MBE) on this plane. After the oxide desorption process at 585 °C reflection high-energy electron diffraction (RHEED) showed along the [−1 2 0] direction a 2× surface reconstruction for GaAs(6 3 1)A, and a 1× pattern was observed for GaAs(6 3 1)B. By annealing the substrates for 60 min, we observed that on the A surface appeared small hilly-like features, while on GaAs(6 3 1)B surface pits were formed. For GaAs(6 3 1)A, 500 nm-thick GaAs layers were grown at 585 °C. The atomic force microscopy (AFM) images at the end of growth showed the self-formation of nanoscale structures with a pyramidal shape enlarged along the [5−9−3] direction. Transversal views of the bulk-truncated GaAs(6 3 1) surface model showed arrays of atomic grooves along this direction, which could influence the formation of the pyramidal structures.  相似文献   

12.
ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates.  相似文献   

13.
For the advance of GaN based optoelectronic devices, one of the major barriers has been the high defect density in GaN thin films, due to lattice parameter and thermal expansion incompatibility with conventional substrates. Of late, efforts are focused in fine tuning epitaxial growth and in search for a low temperature method of forming low defect GaN with zincblende structure, by a method compatible to the molecular beam epitaxy process. In principle, to grow zincblende GaN the substrate should have four-fold symmetry and thus zincblende GaN has been prepared on several substrates including Si, 3C-SiC, GaP, MgO, and on GaAs(0 0 1). The iso-structure and a common shared element make the epitaxial growth of GaN on GaAs(0 0 1) feasible and useful. In this study ion-induced conversion of GaAs(0 0 1) surface into GaN at room temperature is optimized. At the outset a Ga-rich surface is formed by Ar+ ion bombardment. Nitrogen ion bombardment of the Ga-rich GaAs surface is performed by using 2-4 keV energy and fluence ranging from 3 × 1013 ions/cm2 to 1 × 1018 ions/cm2. Formation of surface GaN is manifested as chemical shift. In situ core level and true secondary electron emission spectra by X-ray photoelectron spectroscopy are monitored to observe the chemical and electronic property changes. Using XPS line shape analysis by deconvolution into chemical state, we report that 3 keV N2+ ions and 7.2 × 1017 ions/cm2 are the optimal energy and fluence, respectively, for the nitridation of GaAs(0 0 1) surface at room temperature. The measurement of electron emission of the interface shows the dependence of work function to the chemical composition of the interface. Depth profile study by using Ar+ ion sputtering, shows that a stoichiometric GaN of 1 nm thickness forms on the surface. This, room temperature and molecular beam epitaxy compatible, method of forming GaN temperature can serve as an excellent template for growing low defect GaN epitaxial overlayers.  相似文献   

14.
Auger electron spectroscopy using excitation via grazing impact of protons was applied to determine the elemental composition of the topmost and near-surface layers of a NdGaO3(1 1 0) substrate. The preparation conditions of vicinal NdGaO3 substrates were optimized by varying the annealing temperature, time, and gas atmosphere. Well prepared surfaces show regularly arranged, atomically smooth terraces with single-atomic steps. The surfaces were always NdO terminated with a small amount of Ga (2-4%) atoms on the surface. A Ga and O depletion layer with a thickness of about 4 nm has been detected at optimized preparation conditions.  相似文献   

15.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

16.
Native oxide removal on GaAs(0 0 1) wafers under conventional thermal desorption causes severe surface degradation in the form of pitting. Typical surface regeneration requires several hundred nanometres of buffer layer growth. This level of planarization is necessary to fill in the deep pits since Ehrlich-Schwoebel diffusion barriers cause a retardation of layer growth at multiple monolayer step edges. Pits are, however, attractive nucleation sites for quantum dots (QDs), and hence QDs fill the pits via a self-governing phenomenon. In this paper, we show how 1.7 ML of InAs growth on GaAs(0 0 1) immediately after thermal oxide removal aids the healing of the surface and reduces the necessity for thick buffer layer growth.  相似文献   

17.
Growth of Ag islands under ultrahigh vacuum condition on air-exposed Si(0 0 1)-(2 × 1) surfaces has been investigated by in-situ reflection high energy electron diffraction (RHEED). A thin oxide is formed on Si via exposure of the clean Si(0 0 1)-(2 × 1) surface to air. Deposition of Ag on this oxidized surface was carried out at different substrate temperatures. Deposition at room temperature leads to the growth of randomly oriented Ag islands while well-oriented Ag islands, with (0 0 1)Ag||(0 0 1)Si, [1 1 0]Ag||[1 1 0]Si, have been found to grow at substrate temperatures of ≥350 °C in spite of the presence of the oxide layer between Ag islands and Si. The RHEED patterns show similarities with the case of Ag deposition on H-passivated Si(0 0 1) surfaces.  相似文献   

18.
The influence of GaAs(1 0 0) 2° substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality.  相似文献   

19.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

20.
The atomic structure of LiNbO3(0 0 0 1) surface was investigated by low-energy neutral scattering spectroscopy (LENS). Poled stoichiometric LiNbO3 (SLN) samples were prepared for the measurements. The LENS was developed for surface structure and composition analysis particularly of highly insulating materials and was successfully applied to the structure analysis of the SLN(0 0 0 1) surface. The polar angle dependences of intensity of scattered He0 from the poled SLN surfaces indicate obvious differences between the negatively and the positively charged surfaces. It is suggested that O atoms cover the surfaces, and the first metal layers underneath the O layer consist of Li and Nb for negatively and positively charged surfaces, respectively, parallel to the applied electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号