首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films based on silicon carbide and alumina were synthesized by means of rf-sputtering using a co-deposition process. Several nanostructures were created which consist of thin films (∼200 nm thick) with homogeneous distribution of SiC nanocrystals (∼5 nm mean diameter) in the host alumina matrices. Characterization methods including X-ray photoelectrons spectroscopy (XPS), UV-vis absorption and photoluminescence (PL) were used to identify the involved structures, compositions and optical features of these nanostructures. Thus, XPS investigations were relevant to point out the involved chemical bonding in the core SiC nanocrystals and in the host alumina environments. Additionally, mixed bonding such as Si-O-C was also shown and seems to correlate with the SiC-alumina interfaces. Optical properties of the nanostructures films such as UV-vis absorption and photoluminescence (PL) were measured in representative samples and compared to simulated PL responses obtained by a theoretical model.  相似文献   

2.
In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K2S2O8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K2S2O8 solution has been proposed.  相似文献   

3.
The surface morphology evolution of polyimide (PI) that was treated with an Ar ion beam was explored using a hybrid ion beam system. A hole-like nanostructure formed on PI during the Ar ion beam treatment at a lower fluence, but PI formed 3D porous nanostructures with a mean diameter of ∼90 nm at a higher fluence. The chemical binding energy and the composition of the Ar ion irradiated PI were analyzed using FT-IR and XPS spectra, which revealed that the polymer chain scissioning increased with increasing Ar ion treatment duration, i.e., fluence. The surface hardness and the elastic modulus of PI increased from 1.17 to 1.62 GPa and 4.06 to 5.41 GPa, respectively, with respect to the Ar ion beam treatment duration.  相似文献   

4.
The infrared (IR) photoluminescence (PL) emission of spark-processed silicon (sp-Si) was investigated. A broad and strong room temperature PL peak in the 945 nm (1.31 eV) spectral range was observed when sp-Si was excited with an argon laser. This peak is different from the PL commonly reported for anodically etched porous silicon and other silicon-based materials. The PL intensity increases substantially after annealing sp-Si between 350 and 500 °C in air after which it decreases again. The PL wavelength is observed to peak at 1010 nm by annealing sp-Si near 450 °C. It was further found that the most efficient PL occurs for a Si/O ratio of 0.3, for a small spark gap of about 1 mm, and for spark-processing times in the 15-60 min range.A model for the IR PL is proposed which mirrors that for visible PL. Specifically, it is proposed that the electrons which have been pumped by the laser from the ground state into a broad quasi-absorption band (or closely spaced absorption lines between 1.7 and 2.3 eV) revert back to lower IR levels at 1.31 eV by a non-radiative transition from where they revert radiatively to the ground state by emitting the observed 945 nm light.  相似文献   

5.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

6.
Ultraviolet and blue-green photoluminescence (PL) was investigated on multicrystalline silicon (mc-Si) samples chemically etched by Secco and Yang solutions. The samples were characterized by dislocation density (105-106 cm−2). The form of etched pits is triangular with Yang etch and like a honeycomb with Secco etch as observed with a scanning electron microscope (SEM). These textures of mc-Si wafers give a PL activity similar to that obtained with nanostructures of porous silicon (PS) as reported in the literature. The ultraviolet PL spectra observed with Yang etch shift to the blue-green spectrum range when applying Secco etch. In our experiments we have observed 3-5 μm diameter macro pores separated by a high density of nanowalls. These observations suggest that the origin of the PL activity are quantum dots resulting from the silicon nanocrystallites obtained after few minutes of chemical etching.  相似文献   

7.
We have investigated the influence of the vacuum level upon the growth of carbon nanotubes (CNTs) on 6H-SiC () surface.CNTs of about 160 nm in length were formed densely and uniformly on the 6H-SiC surface during annealing at 1700 °C in a high vacuum (∼10−2 Pa). CNTs of about 1 μm in length were formed during annealing at 1700 °C in an ultra-high vacuum (∼10−7 Pa). However, CNTs were not formed and SiO2 layers were formed on the SiC surface at 1700 °C in air. It is found that longer CNTs can grow up in an ultra-high vacuum, moreover, a little aligned and low-density graphite layers, or carbon nanofibers can also grow up.  相似文献   

8.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

9.
Registration markers are crucial in connecting scanning tunneling microscope (STM) lithographed nano- and atomic-scale devices to the outside world. In this paper we revisit an ultra high vacuum annealing method with a low thermal budget that is fully compatible with etched registration markers and results in clean 2 × 1 reconstructed Si(1 0 0) surfaces required for STM lithography. Surface contamination is prevented by chemically stripping and reforming a protective silicon oxide layer before transferring the sample to the vacuum system. This allows for annealing temperatures of only 900 °C, where normally carbon contaminants result in the formation of SiC clusters on the surface at annealing temperatures below 950 °C. Reactive ion etched marker structures with an etch depth of 60 nm and a typical lateral dimension of only 150 nm survive a 900 °C flash anneal.  相似文献   

10.
The present study is focused on the influence of vacuum thermal treatment on surface/interface electronic properties of Si/Ge multilayer structures (MLS) characterized using X-ray photoelectron spectroscopy (XPS) technique. Desired [Si(5 nm)/Ge(5 nm)]×10 MLS were prepared using electron beam evaporation technique under ultra high vacuum (UHV) conditions. The core-level XPS spectra of as-deposited as well as multilayer samples annealed at different temperatures such as 100 °C, 150 °C and 200 °C for 1 h show substantial reduction in Ge 2p peak integrated intensity, whereas peak intensity of Si 2p remains almost constant. The complete interdiffusion took place after annealing the sample at 200 °C for 5 h as confirmed from depth profiling of annealed MLS. The asymmetric behaviour in intensity patterns of Si and Ge with annealing was attributed to faster interdiffusion of Si into Ge layer. However, another set of experiments on these MLS annealed at 500 °C suggests that interdiffusion can also be studied by annealing the system at higher temperature for relatively shorter time duration.  相似文献   

11.
The photoluminescence and reflectance of porous silicon (PS) with and without hydrocarbon (CHx) deposition fabricated by plasma enhanced chemical vapour deposition (PECVD) technique have been investigated. The PS samples were then, annealed at temperatures between 200 and 800 °C. The influence of thermal annealing on optical properties of the hydrocarbon layer/porous silicon/silicon structure (CHx/PS/Si) was studied by means of photoluminescence (PL) measurements, reflectivity and ellipsometry spectroscopy. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and reflectance measurements were carried out before and after annealing on the carbonized samples for wavelengths between 250 and 1200 nm. A reduction of the reflectance in the ultraviolet region of the spectrum was observed for the hydrocarbon deposited polished silicon samples but an opposite behaviour was found in the case of the CHx/PS ones. From the comparison of the photoluminescence and reflectance spectra, it was found that most of the contribution of the PL in the porous silicon came from its upper interface. The PL and reflectance spectra were found to be opposite to one another. Increasing the annealing temperature reduced the PL intensity and an increase in the ultraviolet reflectance was observed. These observations, consistent with a surface dominated emission process, suggest that the surface state of the PS is the principal determinant of the PL spectrum and the PL efficiency.  相似文献   

12.
对注入Ar+后不同晶面取向的蓝宝石晶体在不同退火条件下的光致发光谱进行了分析.分析结果表明:三种晶面取向的蓝宝石样品经Ar+注入后,其光致发光谱中均出现了新的位于506nm处的发光峰;真空和空气气氛下的退火均对样品在506nm处的发光有增强作用,不同晶面取向的样品发光增强程度不同,且发光增强至最大时的退火温度也不同,空气气氛下的退火使样品发光增强程度更为显著.由此可以看出,退火气氛、退火温度和晶面取向均对样品发光峰强度有影响. 关键词: 2O3')" href="#">Al2O3 离子注入 退火 光致发光谱  相似文献   

13.
Photoluminescence of porous silicon (PS) is instable due perhaps to the nanostructure modification in air. The controllable structure modification processes on the as-prepared PS were conducted by thermal oxidization and/or HF etching. The PL spectra taken from thermally oxidized PS showed a stable photoluminescence emission of 355 nm. The photoluminescence emission taken from both of PS and oxidized porous silicon (OPS) samples etched with HF were instable, which can be reversibly recovered by the HF etching procedure. The mechanism of UV photoluminescence is discussed and attributed to the transformation of luminescence centers from oxygen deficient defects to the oxygen excess defects in the thermal oxidized PS sample and surface absorbed silanol groups on PS samples during the chemical etched procedure.  相似文献   

14.
Nanowires with dimensions of few nanometers were formed on the whole etched surface. The optical analysis of silicon nanostructures was studied. Blue shift luminescence was observed at 660 nm for PS produced by electrochemical etching, and at 629 nm for laser-induced etching. PS produced a blue shift at 622 nm using both etching procedures simultaneously. X-ray diffraction (XRD) was used to investigate the crystallites size of PS as well as to provide an estimate of the degree of crystallinty of the etched sample. Refractive index, optical dielectric constant, bulk modulus and elasticity are calculated to investigate the optical and stiffness properties of PS nanowires, respectively. The elastic constants and the short-range force constants of PS are investigated.  相似文献   

15.
Porous GaAs layers were formed by electrochemical etching of p-type GaAs(1 0 0) substrates in HF solution. A surface characterization has been performed on p-type GaAs samples using X-ray photoelectron spectroscopy (XPS) technique in order to get information about the chemical composition, particularly on the surface contamination. According to the XPS spectra, the oxide layer on as-received porous GaAs substrates contains As2O3, As2O5 and Ga2O3. Large amount of oxygen is present at the surface before the surface cleaning.Compared to untreated GaAs surface, room temperature photoluminescence (PL) investigations of the porous layers reveal the presence of two PL bands: a PL peak at ∼871 nm and a “visible” PL peak at ∼650-680 nm. Both peak wavelengths and intensities varied from sample to sample depending on the treatment that the samples have undergone. The short PL wavelength at 650-680 nm of the porous layers is attributed to quantum confinement effects in GaAs nano-crystallites. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-sized crystallites were observed on the porous GaAs surface. An estimation of the mean size of the GaAs nano-crystals obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results.  相似文献   

16.
Photoluminescent and optical properties of porous oxide films formed by two-step aluminum anodization at a constant potential of 30 V in sulfamic acid have been investigated after their annealing, ranging from room temperature up to 600 °C. X-ray diffraction reveals the amorphous nature of porous oxide films. Infrared and energy dispersive spectroscopy indicates the presence of sulfuric species incorporated in oxide films during the anodization. Photoluminescence (PL) measurements show PL bands in the range from 320 to 600 nm. There are two peaks in emission and excitation spectra. One emission peak is at constant wavelength centered at 460 nm and the other shifts from 390 to 475 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is at constant wavelength at 270 nm and the other also shifts to longer wavelengths while increasing emission wavelength. Upon annealing of the as-prepared oxide films PL increases reaching maximum value at about 300 °C and then decreases. The results indicate the existence of two PL centers, one placed at surface of the pore wall, while the other positioned inside the oxide films.  相似文献   

17.
In this work, the nanocrystalline porous silicon (PS) is prepared through the simple electrochemical etching of n-type Si (1 0 0) under the illumination of a 100 W incandescent white light. SEM, AFM, Raman and PL have been used to characterize the morphological and optical properties of the PS. SEM shows uniformed circular pores with estimated sizes, which range between 100 and 500 nm. AFM shows an increase in its surface roughness (about 6 times compared to c-Si). Raman spectra of the PS show a stronger peak with FWHM=4.3 cm−1 and slight blueshift of 0.5 cm−1 compared to Si. The room temperature photoluminescence (PL) peak corresponding to red emission is observed at 639.5 nm, which is due to the nano-scaled size of silicon through the quantum confinement effect. The size of the Si nanostructures is estimated to be around 7.8 nm from a quantized state effective mass theory. Thermally untreated palladium (Pd) finger contact was deposited on the PS to form MSM photodetector. Pd/PS MSM photodetector shows lower dark (two orders of magnitude) and higher photocurrent compared to a conventional Si device. Interestingly, Pd/PS MSM photodetector exhibits 158 times higher gain compared to the conventional Si device at 2.5 V.  相似文献   

18.
Thin films of SiOx having thickness of 0.2 μm and oxygen content x=1.5 or 1.7 are prepared by thermal evaporation of SiO in vacuum. Then some samples are furnace annealed for various times (in the range ) at 770 and 970 K and some others are rapid thermal annealed at 970 K for 30 and 60 s. Photoluminescence (PL) measurements are carried out at room temperature using the 442 nm line of a He-Cd laser and the 488 nm of an Ar laser for excitation. The effect of the annealing conditions and wavelength of the exciting light on the shape of the PL from these films is explored. The deconvolution of the PL spectra measured with the 442 nm line from samples annealed at 770 K for reveals two distinct PL bands peaked at around 2.3 and 2.5 eV, which do not shift appreciably with increasing annealing time. In addition, at longer annealing times, a weak third band is resolved centred in the range 2.0-2.1 eV. It exists in the spectra of all samples annealed at 970 K being more prominent in the samples with x=1.5. The intensity of this band shows different dependences on the annealing time in the films with different initial composition. The results obtained are discussed in terms of radiative recombination via defect states in the SiOx matrix (the 2.5 eV band) or at the a-Si-SiOx interface (the 2.3 eV band). The band centred in the 2.0-2.1 eV range is related to recombination in amorphous silicon nanoparticles grown upon annealing.  相似文献   

19.
This very paper is focusing on the preparation of porous nanostructures in n-type silicon (1 1 1) wafer by chemical etching technique in alkaline aqueous solutions of 5 M NaOH, 5 M K2CO3 and 5 M K3PO4, and particularly, on its ultraviolet-blue photoluminescence emission. The anodic chemical etched silicon wafer has been characterized by means of optical microscopy, scanning electron microscopy, fluorescence spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. This very surface morphology characterization has been clearly shown - the effect of anodic-chemical-etching procedure processed in K2CO3 or K3PO4 was much vigorous than that processed in NaOH. The FTIR spectra indicate that the silicon oxide was formed on the surface of electrochemical etched n-Si (1 1 1) wafers, yet not on that of the pure chemical etched ones anyhow. And an intense ultraviolet-blue photoluminescence emission is observed, which then differs well from the silicon specimen etched in alkaline solution with no anodic potential applied. The proper photoluminescence mechanism is discussed, and hence there may be a belief that the intense ultraviolet-blue photoluminescence emission would be attributed to the silicon oxide coating formed on silicon wafer in anodic-chemical-etching process.  相似文献   

20.
In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted mono-crystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 1¯ 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5×1016 ions/cm2. Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号