首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shape and microstructure in laser-induction hybrid cladding were investigated, in which the cladding material was provided by means of three different methods including the powder feeding, cold pre-placed coating (CPPC) and thermal pre-placed coating (TPPC). Moreover, the modes of energy action in laser-induction hybrid cladding were also studied. The results indicate that the cladding material supplying method has an important influence on the shape and microstructure of coating. The influence is decided by the mode of energy action in laser-induction hybrid cladding. During the TPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating. During the CPPC hybrid cladding of Ni-based alloy, the laser and induction heating are mainly performed on coating and substrate surface, respectively. In powder feeding hybrid cladding, a part of laser is absorbed by the powder particles directly, while the other part of laser penetrating powder cloud radiates on the molten pool. Meanwhile, the induction heating is entirely performed on the substrate. In addition, the wetting property on the interface is improved and the metallurgical bond between the coating and substrate is much easier to form. Therefore, the powder feeding laser-induction hybrid cladding has the highest cladding efficiency and the best bond property among three hybrid cladding methods.  相似文献   

2.
Based on the experiments of laser-induction hybrid cladding by powder feeding, the cracking behavior of Ni-based coating and solidification characteristic in molten pool were investigated. The results indicate that the hybrid cladding is effective to prevent from cracking in Ni-based coating. With the increase of induction energy density, the tensile stress and crack rate decrease obviously. When the induction energy density arrives at 36 J/mm2, the free-cracks coating can be achieved. In laser-induction hybrid cladding, the martensite can be eliminated in the heat affected zone and the phase transformation stress is little. Moreover, the molten pool is solidified through two directions such as the coating surface and coating/substrate interface, i.e., firstly the top and bottom in molten pool are solidified, and then the middle in molten pool is solidified. Therefore, in hybrid cladding, the peak value of tensile stress is located in the middle of coating, which is different from that in laser cladding. This distribution status of residual stress is greatly helpful to restrict the cracks of Ni-based coating in laser-induction hybrid cladding.  相似文献   

3.
Based on an experimental study of laser-induction hybrid cladding by powder feeding, the dilution action and elemental composition distribution were investigated in detail. The results indicate that, compared with individual laser cladding, by using laser-induction hybrid cladding it is easier to form a metallurgical bonding coating and the change range of dilution is much larger. Moreover, at the bottom of molten region, the morphology exhibits nearly a straight line. The processing parameters have great influence on dilution in hybrid cladding. With the increase of scanning speed, the tendency of dilution presents a U-shaped profile, i.e., the middle dilution is much less than those of two ends. The dilution increases with the induction energy. Furthermore, the bigger the dilution, the more uniform is the elemental composition throughout coating. In laser-induction hybrid cladding, the microstructure of low dilution coating is relatively fine due to the low hybrid cladding energy. By adjusting the laser energy and induction energy appropriately, i.e., high induction energy—low laser energy, the low dilution coating with fine microstructure and good mechanical properties can be achieved.  相似文献   

4.
Fe + 50 wt.% WC composite coating was prepared by laser induction hybrid rapid cladding (LIHRC) on steel substrate. The phase and microstructure of the composite coating were investigated by X-ray diffraction (XRD), environmental scanning electron microscope (ESEM) and energy dispersive spectrum (EDS). The results showed that WC particles were dissolved almost completely to precipitate the coarse herringbone M6C eutectic carbides and the fine dendritic M6C carbides, and that the partially dissolved WC particles with an alloyed reaction layer were occasionally observed in the whole coating. The phases of the composite coating were composed of supersaturated solid solution α-Fe, retained austenite, Fe3C, W2C, M6C and M7C3. The microstructure evolution in the composite coating was represented by the transformation of three parts such as Fe-based metallic matrix, dispersed carbides and incompletely dissolved WC particles. The microhardness of Fe-based WC composite coating was three times much higher than that of the substrate, but was relatively lower than that of Ni-based WC composite coating by LIHRC.  相似文献   

5.
In order to investigate the microstructure characteristics and properties of Ni-based WC composite coatings containing a relatively large amount of WC particles by laser induction hybrid rapid cladding (LIHRC) and compare to the individual laser cladding without preheating, Ni60A + 35 wt.% WC composite coatings are deposited on A3 steel plates by LIHRC and the individual laser cladding without preheating. The composite coating produced by the individual laser cladding without preheating exhibits many cracks and pores, while the smooth composite coating without cracks and pores is obtained by LIHRC. Moreover, the cast WC particles take on the similar dissolution characteristics in Ni60A + 35 wt.% WC composite coatings by LIHRC and the individual laser cladding without preheating. Namely, the completely dissolved WC particles interact with Ni-based alloy solvent to precipitate the blocky and herringbone carbides, while the partially dissolved WC particles still preserve the primary lamellar eutectic structure. A few WC particles are split at the interface of WC and W2C, and then interact with Ni-based alloy solvent to precipitate the lamellar carbides. Compared with the individual laser cladding without preheating, LIHRC has the relatively lower temperature gradient and the relatively higher laser scanning speed. Therefore, LIHRC can produce the crack-free composite coating with relatively higher microhardness and relatively more homogeneous distribution of WC particles and is successfully applied to strengthen the corrugated roller, showing that LIHRC process has a higher efficiency and good cladding quality.  相似文献   

6.
The relationships between the processing parameters (i.e. laser specific energy, powder density, preheated temperature of substrate and types of substrate) and the structure characteristics of Ni-based WC composite coatings during laser induction hybrid rapid cladding (LIHRC) were investigated systematically. The results show that laser specific energy, cladding height and contact angle have a linear relation with powder density, as can provide the predictions of laser processing parameters according to the geometrical characteristics of a single laser track (i.e. cladding height, cladding width). Moreover, dilution of composite coating increases with the increasing of laser specific energy and the preheated temperature of substrate, while reduces with the increasing of powder density. The types of substrate also have an important effect on dilution of composite coating, as has a strong dependence on the thermophysical properties of substrate (i.e. melting point, resistivity and permeability).  相似文献   

7.
To improve the wear resistance of copper components, laser surface cladding (LSC) was applied to deposit (Ti,W)C reinforced Ni–30Cu alloy composite coating on copper using a cladding interlayer of Ni–30Cu alloy by Nd:YAG laser. The microstructure and phases of the composite coating were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray energy dispersive microanalysis (EDX). Microhardness tester and pin-on-disc wear tester were employed to evaluate the hardness and dry-sliding wear resistance. The results show that crack-free composite coating with metallurgical bonding to the copper substrate is obtained. Phases identified in the (Ti,W)C-reinforced Ni–30Cu alloy composite layer are composed of TiWC2 reinforcements and (Ni,Cu) solid solution. TiWC2 reinforcements are distributed uniformly in the (Ni,Cu) solid solution matrix with dendritic morphology in the upper region and with particles in the mid-lower region. The microhardness and wear properties of the composite coating are improved significantly in comparison to the as-received copper substrate due to the addition of 50 wt% (Ti,W)C multicarbides.  相似文献   

8.
Laser induction hybrid rapid cladding (LIHRC) cannot only increase the cladding efficiency, but can also eliminate porosity and cracking of ceramic–metal composite coatings. In order to obtain a deep understanding of LIHRC with rapid cladding speed and high powder deposition rate, an analytical model of LIHRC for Ni-based WC composite coatings is proposed in the paper. The predictions of cladding height and powder efficiency obtained with this model are in good agreement with experimental results. Injection angles at which the attenuation rate of laser power is relatively low are identified and crack-free composite coatings with smooth surface, good profile and metallurgical bonding to substrate can be obtained. The calculated results for the temperature of the powder particles are compared to experimental data of the microhardness profiles and show a similar trend.  相似文献   

9.
激光熔覆NiCrBSi涂层组织及摩擦磨损性能   总被引:3,自引:0,他引:3  
采用激光熔覆技术在H13钢表面制备了NiCrBSi合金涂层,利用OM,SEM,EDX和XRD等对熔覆层的微观组织进行了分析,测试了熔覆层的显微硬度和摩擦磨损性能。结果表明,激光熔覆层与基体形成了良好的冶金结合,熔覆层的组织主要由γ-Ni,Cr7C3和CrB等相组成。熔覆层显微硬度在650~850HV之间,明显高于H13钢基体的硬度。摩擦磨损实验表明,在相同的条件下,熔覆层的耐磨性比基体有了明显的提高,磨损体积减少了92.4%。通过对磨损后的试样进行粗糙度测试后表明,涂层具有更平滑的表面。  相似文献   

10.
铁基合金激光熔覆层高温润滑磨损性能   总被引:4,自引:4,他引:0       下载免费PDF全文
 为提高40Cr合金钢的表面耐磨性,采用预置激光熔覆法在40Cr基体表面制备铁基合金涂层, 利用扫描电镜观察分析熔覆层显微组织形貌,用显微硬度仪测试熔覆层截面显微硬度,用摩擦磨损试验机测定在润滑条件下基体、熔覆层的摩擦系数随温度变化的规律。研究结果表明:熔覆层与基体实现良好冶金结合,熔覆层横截面微观组织呈现平面晶、树枝晶和胞状晶分布;熔覆层硬度值介于617.5~926.6 HV0.2之间,基体硬度介于205.2~278.2 HV0.2之间;在200 ℃以下,熔覆层摩擦系数在磨程中趋于平稳,在0.1附近轻微波动,小于基体平均摩擦系数;当温度超过200 ℃,油膜分解,引发润滑失效,磨损方式向干摩擦转化,磨损机理从微切削磨损主导向粘着磨损、磨粒磨损和氧化磨损复合磨损方式转化。  相似文献   

11.
The content of each constituent element in the newly developed high-entropy alloys (HEAs) is always restricted in equimolar or near-equimolar ratio in order to avoid the formation of complex brittle phases during the solidification process. In this study, a 6FeNiCoSiCrAlTi high-entropy alloy coating with simple BCC solid solution phase has been prepared by laser cladding on a low carbon steel substrate. The microstructure, hardness and magnetic properties have been investigated. The experimental results show that the tendency of component segregation in the conventional solidification microstructure of multi-component alloy is effectively relieved. The microstructure of the coating is mainly composed of equiaxed polygonal grains, discontinuous interdendritic segregation and nano-precipitates. EBSD observation confirms that the polygonal grains and interdendritic segregation have similar BCC structure with lots of low angle grain boundaries at the interface. The microhardness of the coating reaches 780 HV0.5, which is much higher than most of the HEAs prepared by other methods. In addition, the coating shows excellent soft magnetic properties.  相似文献   

12.
采用激光熔覆技术在45钢基体上制备了不同CeO2含量的镍基纳米Al2O3复合涂层,对熔覆层进行了微观组织分析和显微硬度测试。结果表明,随着CeO2含量的增加,熔覆层组织由亚共晶向共晶组织转变;加入1.0%CeO2对镍基纳米Al2O3熔覆层的组织起到明显的细化和净化作用,枝晶生长的方向性减弱,组织趋向均匀,熔覆涂层的显微硬度值比未加稀土的涂层提高了60-95HV0.2。  相似文献   

13.
鉴于传统的激光熔覆金属陶瓷复合涂层技术主要存在2方面不足:其一,熔覆效率低,导致大面积熔覆时成本昂贵;其二,由于激光熔覆本身的特点,即快速加热与快速凝固,在激光熔覆过程中,热应力极易诱导熔覆层开裂。基于此,综述了国内外激光熔覆金属陶瓷复合涂层的研究进展,指出其存在的主要问题,并提出了激光感应复合快速熔覆的新方法,即感应预热基材的同时快速激光熔覆。该方法不仅可使熔覆效率大大提高而且获得了无裂纹的金属陶瓷复合涂层。  相似文献   

14.
Laser cladding of in situ TiB2/Fe composite coating on steel   总被引:1,自引:0,他引:1  
To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ TiB2/Fe composite coating on steel using ferrotitanium and ferroboron as the coating precursor. The phase constituents and microstructure of the composite coating were investigated using X-ray diffraction (XRD), scanning electron micrograph (SEM) and electron probe microanalysis (EPMA). Microhardness tester and block-on-ring wear tester were employed to measure the microhardness and dry-sliding wear resistance of the composite coating. Results show that defect-free composite coating with metallurgical joint to the steel substrate can be obtained. Phases presented in the coating consist of TiB2 and α-Fe. TiB2 particles which are formed in situ via nucleation-growth mechanism are distributed uniformly in the α-Fe matrix with blocky morphology. The microhardness and wear properties of the composite coating improved significantly in comparison to the as-received steel substrate due to the presence of the hard reinforcement TiB2.  相似文献   

15.
Fe-Al-Si in situ composite coating was fabricated on the surface of ASTM A283Gr.D steel by laser cladding with the preplaced powder. The influence of powder composition, laser power and scanning speed on microstructure, microhardness and wear resistance were investigated in this paper. The results show that Fe-Al-Si in situ composite coating with the good metallurgical bond mainly consists of Fe, SiO2 and Al2Fe3Si4 intermetallic compound. With the increase of laser power and scanning speed, the grain size of coating gets the minimum value. With the increase of laser power and scanning speed, microhardness and wear resistance both get the peak vaule, and their value are three times and 3.5 times those of substrate, respectively. The optimum parameters are followed as: the ratio of the preplaced composite powder: 8:1:1, laser power: 1600 W and scanning speed: 400 mm/min.  相似文献   

16.
利用光学显微镜和扫描电镜观察了钛合金表面TiC-Ni激光熔覆层的宏观形貌和微观组织,测试了激光熔覆层的硬度、摩擦系数和磨损量。利用SEM观察了磨损的表面形貌和磨屑的形貌,分析了激光熔覆层的磨损机制。结果表明:激光熔覆层组织致密,无气孔和裂纹,硬度为基材的3倍;激光熔覆层的摩擦系数随环境压力的降低而提高,磨损量随环境压力的降低、法向载荷的增加而增加;低载时为轻微的磨粒磨损,高载时为严重的剥层磨损。  相似文献   

17.
The thick Ni-coated WC coatings, in a matrix of Nickel-based alloys, were prepared on AISI 1045 steel using plasma cladding equipment. A pre-placed layer of uniform mixture, with different weight fractions of Ni-coated WC powder and Nickel-based alloy powder, on the steel substrate was melted at the high temperature of the plasma jet. The coating composition, microstructure and microhardness were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS) and microhardness testing. The experimental results show that the metallurgical bond was formed between the coating and substrate. The XRD results show that the coatings contain γ-Ni, carbides (such as M23C6 and M7C3) and boride (such as Fe2B, Fe3B phases). SEM shows that all the coatings are crack-free with lower porosity (<1%). It is found that the microhardness and the electrochemical behavior of the coatings are depended on the content of Ni-coated WC powder. The corrosion mechanism for the coatings may be due to the microgalvance corrosion between the phases in the cladding coatings.  相似文献   

18.
To construct a bioactive interface between metal implant and the surrounding bone tissue, the gradient calcium phosphate bioceramic coating on titanium alloy (Ti-6Al-4V) was designed and fabricated by laser cladding. The results demonstrated that the gradient bioceramic coating was metallurgically bonded to the titanium alloy substrate. The appearance of hydroxyapatite and β-tricalcium phosphate indicated that the bioactive phases were synthesized on the surface of coating. The microhardness gradually decreased from the coating to substrate, which could help stress relaxation between coating and bone tissue. Furthermore, the methyl thiazolyl tetrazolium (MTT) assay of cell proliferation revealed that the laser-cladded bioceramic coating had more favorable osteoblast response compared with the surface of untreated titanium alloy substrate.  相似文献   

19.
The cluster line criterion was used for optimized design of a Ni-Zr-Al alloy used as coating on the AZ91HP magnesium alloy by laser cladding. Results show that the coating mainly consists of an amorphous, two ternary intermetallic phases with Ni10Zr7 and Ni21Zr8 type structures resulting in high hardness, good wear resistance and corrosion resistance. The interface between the clad layer and the substrate has good metallurgical bond.  相似文献   

20.
Zn particles are employed to create different impact conditions, including impact-induced interface melting in cold spraying. The influence of particle impact conditions on the interfacial microstructure evolution, microhardness and the bonding of particles in cold-sprayed Zn coatings are studied. An examination of coating surface morphology provides convincing evidence for melting at particle interfaces. The results reveal that the nanostructured phase was formed at the interface areas between deposited particles in coating resulting from the recrystallization of deformed grains. Melting at interfaces significantly enhances the bonding between the substrate and the coating and between the deposited Zn particles in the coating through the formation of a metallurgical bond. In addition, high driving gas temperature causes the decreasing hardness of deposited Zn coatings. The effects of particle conditions on the impact-induced melting and bonding mechanisms are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号