首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we report the synthesis of silica coated ZnO nanoparticles by ultrasound irradiation of a mixture of dispersion of ZnO, tetraethoxysilane (TEOS), and ammonia in an ethanol-water solution medium. The silica coating layer formed at the initial TEOS/ZnO loading of 0.8 for 60 min ultrasonic irradiation was uniform and extended up to 3 nm from the ZnO surface as revealed from HR-TEM images. Silica coated ZnO nanoparticles demonstrated a significant inhibition of photocatalytic activity against photodegradation of methylene blue dye in aqueous solution. The effects of silica coating on the UV blocking property of ZnO nanoparticles were also studied.  相似文献   

2.
Photocatalytic active titanium dioxide (TiO2)/zinc oxide (ZnO) composite was prepared by homogeneous hydrolysis of a mixture of titanium oxo-sulphate and zinc sulphate in aqueous solutions with thioacetamide and subsequent annealing at the temperature of 600 °C. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission microscopy (HRTEM). Nitrogen adsorption-desorption was used for surface area (Brunauer-Emmett-Teller—BET) and porosity determination. The photoactivity of the prepared TiO2/ZnO samples was assessed by the photocatalytic decomposition of Orange II dye in an aqueous slurry under irradiation of 254 and 365 nm wavelengths. Under the same conditions, the photocatalytic activity of a commercially available photocatalyst (Degussa P25), the pure anatase TiO2 nanoparticles and cubic ZnO were examined.  相似文献   

3.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

4.
Transparent conductive oxide (TCO) thin films play a significant role in recent optical technologies. Displays of various types, photovoltaic systems, and opto-electronic devices use these films as transparent signal electrodes. They are used as heating surfaces and active control layers. Oxides of TCO materials such as: tin, indium, zinc, cadmium, titanium and the like, exhibit their properties. However, indium oxide and indium oxide doped with tin (ITO) coatings are the most used in this technology.In this work, we present conductive transparent indium oxide thin films which were prepared using a novel triode sputtering method. A pure In2O3 target of 2 in. in diameter was used in a laboratory triode sputtering system. This system provided plane plasma discharge at a relatively low pressure 0.5-5 mTorr of pure argon. The substrate temperature was varied during the experiments from room temperature up to 200 °C. The films were deposited on glass, silicon, and flexible polyimide substrates. The films were characterized for optical and electrical properties and compared with the indium oxide films deposited by magnetron sputtering.  相似文献   

5.
This work reports the synthesis of indium oxide nanoparticles and their thermal, structural, microstructural and optical characterization. The preparation method is based on a surfactant-free room temperature soft chemistry route. Spherical indium oxide nanoparticles (about 8 nm in diameter) were obtained after thermal treatment of gels at 400 °C for 2 h, as shown by X-ray diffraction experiments and nitrogen adsorption measurements. Transmission electron microscopy observations confirm the single-crystalline nature of the produced nanoparticles. The photoluminescence emission spectrum at room temperature shows a broad peak with onset at approximately 315 nm as a result of quantum size effect as revealed by small-angle X-ray scattering.  相似文献   

6.
The novel visible-light-activated La/I/TiO2 nanocomposition photocatalyst was successfully synthesized using precipitation-dipping method, and characterized by X-ray powder diffraction (XRD), the Brunauer-Emmett-Teller (BET) method, transmission electron microscopy (TEM), thermogravimetry-differential scanning calorimetry (TG-DSC) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity of La/I/TiO2 was evaluated by studying photodegradation of reactive blue 19 as a probe reaction under simulated sunlight irradiation. Photocatalytic experiment results showed that the maximum specific photocatalytic activity of the La/I/TiO2 photocatalyst appeared when the molar ratio of La/Ti was 2.0 at%, calcined at 350 °C for 2 h, due to the sample with good crystallization, high BET surface area and small crystal size. Under simulated sunlight irradiation, the degradation of reactive blue 19 aqueous solution reached 98.6% in 80 min, which showed La/I/TiO2 photocatalyst to be much higher photocatalytic activity compared to standard Degussa P25 photocatalyst. The higher visible light activity is due to the codoping of lanthanum and iodine.  相似文献   

7.
This article demonstrated that introducing nickel (Ni) atoms into an indium tin oxide (ITO) anode could considerably decrease ITO surface roughness and eliminate the formation of dark spots of an organic light-emitting device (OLED). A dramatic drop in surface roughness from 6.52 nm of an conventional ITO to 0.46 nm of an 50 nm Ni(50 W)-doped ITO anode was observed, and this led to an improved lifetime performance of an Alq3 based OLED device attributed to reduced dark spots. Reducing thickness of Ni-doped ITO anode was found to worsen surface roughness. Meanwhile, the existence of Ni atoms showed little effect on deteriorating the light-emitting mechanism of OLED devices.  相似文献   

8.
Colloidal solutions of Indium oxide nanoparticles have been produced by means of laser ablation in liquids (LALs) technique by simply irradiating with a second harmonic (532 nm) Nd:YAG laser beam a metallic indium target immersed in distilled water and varying the laser fluence up to 10 J cm−2 and the ablation time up to 120 min. At all the investigated fluences the vaporization process of the indium target is the dominant one. It produces a majority (>80%) of small size (<6 nm) nanoparticles, with a very limited content of larger ones (size between 10 and 20 nm). The amount of particles increases regularly with the ablation time, supporting the scalability of the production technique. The deposited nanoparticles stoichiometry has been verified by both X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-ray (EDX) analysis. Optical bandgap values of 3.70 eV were determined by UV-vis absorption measurements. All these results confirm the complete oxidation of the ablated material.  相似文献   

9.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

10.
TiO2 nanoparticles were synthesized via the laser pyrolysis of titanium tetrachloride-based gas-phase mixtures. In the obtained nanopowders, a mixture of anatase and rutile phases with mean particle size of about 14 nm was identified. Using the thermal heated laser nanopowders, mechanically stable films were produced by immobilizing titania nanopowders on glass substrates (the doctor blading method followed by compression). The photocatalytic activity of the prepared films was tested by the degradation of 4-chlorophenol in an aqueous solution under UV-illumination. By referring to known commercial samples (Degussa P25) similarly prepared, higher photocatalytic efficiency was found for the laser-prepared samples.  相似文献   

11.
Nanoparticles of Zn1−xCuxS with various dopant contents (0 ≤ x ≤ 0.15) were prepared in water by refluxing for 90 min at about 95 °C. Powder X-ray diffraction (XRD) patterns of the nanoparticles demonstrate that loading of Cu2+ ions does not change the crystal structure of ZnS. Scanning electron microscopy (SEM) images demonstrate that size of the nanoparticles decreases with increasing Cu2+ ions. UV-Vis diffuse reflectance spectra (DRS) of the nanoparticles show significant absorption in visible light region. Adsorption capacity of the nanoparticles for methylene blue (MB) increases with mole fraction of copper ions. Photocatalytic activity of the nanoparticles toward photodegradation of MB was evaluated under visible light irradiation. The results indicate that Zn0.85Cu0.15S nanoparticles exhibit highest photocatalytic activity among the prepared samples. Moreover, effects of refluxing time applied for preparation of the nanoparticles and calcination temperature were investigated.  相似文献   

12.
Organic photovoltaic cells are made by sandwiching a composite active layer of organic electronic materials conjugated copolymer (BEHP-co-MEH-PPV) mixed with ZnO nanoparticles, between two metallic conductors, typically a layer of indium tin oxide (ITO) with high work function (4.8 eV) and a layer of low work function metal (3.7 eV) such as aluminium. In this work, the spin coated conjugated copolymer blends (BEHP-co-MEH-PPV): ZnO thin films, deposited on both silicon and glass substrates, have been studied for morphology using atomic force microscopy (AFM). All films examined by AFM, showed a dense structure with average roughness of 20–40 nm.  相似文献   

13.
Mo surface-modified layer in Ti6Al4V alloy was prepared using plasma surface alloying technique. Microstructure of the modified layer was analyzed using X-ray photoelectron spectroscopy (XPS), rough-meter and GDA750 glow discharge optical emission spectrometer. Phase composition of the Mo surface-modified layer was characterized by D/max 2500 X-ray diffraction. Results show that the Mo surface-modified layers consist of pure Mo surface layer with 〈1 1 0〉 and 〈2 1 1〉 orientations and diffusion layer. Mo 3d, O 1s, C 1s and Ti 2p, O 1s, C 1s XPS spectra are recorded at topsurface in the Mo-modified layer and titanium substrate respectively. Because of the different roughness and microstructure, the Mo surface-modified layer can to some extent inhibit bacteria adherence.  相似文献   

14.
Transparent conducting indium tin oxide/Au/indium tin oxide (ITO) multilayered films were deposited on unheated polycarbonate substrates by magnetron sputtering. The thickness of the Au intermediated film varied from 5 to 20 nm. Changes in the microstructure, surface roughness and optoelectrical properties of the ITO/Au/ITO films were investigated with respect to the thickness of the Au intermediated layer. X-ray diffraction measurements of ITO single layer films did not show characteristic diffraction peaks, while ITO/Au/ITO films showed an In2O3 (2 2 2) characteristic diffraction peak. The optoelectrical properties of the films were also dependent on the presence and thickness of the Au thin film. The ITO 50 nm/Au 10 nm/ITO 40 nm films had a sheet resistance of 5.6 Ω/□ and an average optical transmittance of 72% in the visible wavelength range of 400-700 nm. Consequently, the crystallinity, which affects the optoelectrical properties of ITO films, can be enhanced with Au intermediated films.  相似文献   

15.
Low-temperature preparation of anatase titania-coated magnetite   总被引:1,自引:0,他引:1  
A composite photocatalyst with an anatase titania shell and a magnetite core was prepared in a novel way at low temperature (75 °C at most) by coating photoactive titanium dioxide onto a magnetic Fe3O4 core. The photocatalytic activity of the prepared photocatalyst was evaluated by the degradation of model contaminated water of phenol and compared to single-phase titania (either Degussa P25 or prepared titania without magnetic Fe3O4). The results showed that the photoactivity was slightly depressed. Then, a remarkable improvement in photoactivity was achieved by modifying the photocatalyst with a SiO2 layer between the Fe3O4 core and TiO2 shell. The repetitive using of the modified photocatalyst was also investigated, and experimental results illustrated that the photocatalytic-degraded ratio of phenol was still higher than 80% after six cycles.  相似文献   

16.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

17.
Low temperature synthesis of ITO nanoparticles using polyol process   总被引:2,自引:0,他引:2  
A low temperature synthesis technique to prepare indium tin oxide (ITO) nanoparticles by the polyol process is proposed. On examining the phase formation of ITO nanoparticles in polyols and alcohols such as ethylene glycol, trimethylene glycol, and 1-heptanol, it was found that ITO nanoparticles could be synthesized directly without any post--annealing treatments at 175 °C in 1-heptanol. The morphology of the particles is influenced by the type of polyol. The composition of Sn in the ITO system could be easily controlled by simply varying the In/Sn precursor ratio in 1-heptanol. The low temperature synthesis method has enabled the formation of highly crystalline ITO nanoparticles with diameters less than 25 nm even at annealing temperatures as high as 700 °C.  相似文献   

18.
A series of PdxNi1 − x nanoparticles in a diameter of 6-7 nm were prepared by wet chemical reduction. They were then modified with two surfactants, stearic acid (SA) and polyethylene glycol (PEG). Desorption of the surfactant was studied using a temperature programmed desorption technique, and the sintering behavior of surface-modified PdxNi1 − x nanoparticles was examined. Since surface energy of the nanoparticles depends on the alloy composition, it can be correlated with the desorption temperature of surfactant from the nanoparticle surface. Because Ni has a higher surface energy, the surfactant desorption temperature increases as the Ni content increases. With the same stoichiometry, the desorption temperature of SA is always higher than that of PEG. The SA-modified nanoparticles have higher thermal stability and are less sintered than PEG-modified nanoparticles. The sintering and growth behavior of the nanoparticles can be correlated with variation of surface energy due to different surface modification.  相似文献   

19.
For cost effective fabrication and time of alternative current plasma display panels (AC PDPs), an indium tin oxide (ITO) layer was patterned directly with a Q-switched diode pumped Nd:YVO4 laser (λ = 1064 nm). As experimental results, 500 mm/s scan speed with 40 kHz repetition rate was suitable for the application to AC PDP ITO electrode. In comparison with the chemically wet-etched ITO patterns by photolithography method, laser-ablated ITO patterns showed the formation of shoulders at the edge of the ITO lines and a ripple-like structure of the etched bottom. By dipping the laser-ablated ITO films in the chemical etching solution for 30 s at 50 °C, the shoulders were effectively removed without affecting the discharging properties of AC PDP.  相似文献   

20.
Titanium oxide films are of critical importance for the electrochromic device technology. The substrate, a conductive glass being coated with indium tin oxide (ITO) thin films, was deposited tungsten and titanium oxide by pulsed co-sputtering deposition system. The film thickness increased with the ion beam power. However, the slope of the curve of thickness against power at an ion beam power of less than 300 W was greater than that at a power of 400 or 500 W. A high ion beam power resulted produced a crystalline structure, as revealed by X-ray diffraction (XRD). Moreover, increasing the ion beam power resulted in the high Li-ions transport. The electrochromic behavior was optimal at an ion beam power of 200 W.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号