首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium tin oxide nanoparticles prepared by co-precipitation were re-dispersed in benzyl alcohol and modified successfully with titanium dioxide using titanium tetrachloride as precursor. The morphologies and the re-dispersing processes of both the initial and modified indium tin oxide nanoparticles were investigated, respectively. The photocatalytic properties of the modified nanoparticles were compared with commercial P25 photocatalyst. It was found that (i) the average diameter of the initial indium tin oxide nanoparticles was 10.7 nm and that of the surface-modified nanoparticles was 14.5 nm; (ii) the optimal ultrasonication time was 10.0 min and 8.0 min for the initial and surface-modified ITO nanoparticles, respectively; (iii) the modified particles possessed a higher photocatalytic activity than commercial P25 photocatalyst in the photodegradation of rhodamine B in aqueous medium at pH 5.00; (iv) the pH of the medium markedly influences the photodegradation efficiency.  相似文献   

2.
In this work zinc substituted cobalt ferrite nanoparticles (Co0.5Zn0.5Fe2O4) have been synthesized by the coprecipitation method, using stable ferric, zinc and cobalt salts with sodium hydroxide, at different solution temperatures, from room temperature to 363 K. The cobalt-zinc ferrite crystalline phase, the particle size and the morphology of the resulting nanoparticles were studied by X-ray diffraction and transmission electron microscopy. The average crystallite size of each sample was calculated from the broadening of the most intense peak (3 1 1), using Scherrer's formula and the results show crystallite sizes increased from 6 to 8 nm by increasing the solution temperature from room temperature to 363 K respectively. Room temperature VSM measurements show that the prepared nanoparticles have superparamagnetic behavior and did not saturate at maximum field of 800 kA/m. The variation of AC-susceptibility of the samples with respect to temperature was measured and it was found that the blocking temperature increased from 198 to 270 K by increasing the solution temperature from room temperature to 363 K respectively. FTIR spectra of the samples have been analyzed in the frequency range 400-4000 cm−1, which also confirms the results of XRD.  相似文献   

3.
Transparent conductive oxide (TCO) thin films play a significant role in recent optical technologies. Displays of various types, photovoltaic systems, and opto-electronic devices use these films as transparent signal electrodes. They are used as heating surfaces and active control layers. Oxides of TCO materials such as: tin, indium, zinc, cadmium, titanium and the like, exhibit their properties. However, indium oxide and indium oxide doped with tin (ITO) coatings are the most used in this technology.In this work, we present conductive transparent indium oxide thin films which were prepared using a novel triode sputtering method. A pure In2O3 target of 2 in. in diameter was used in a laboratory triode sputtering system. This system provided plane plasma discharge at a relatively low pressure 0.5-5 mTorr of pure argon. The substrate temperature was varied during the experiments from room temperature up to 200 °C. The films were deposited on glass, silicon, and flexible polyimide substrates. The films were characterized for optical and electrical properties and compared with the indium oxide films deposited by magnetron sputtering.  相似文献   

4.
High-density and uniformly aligned tungsten oxide nanotip arrays have been deposited by a conventional thermal evaporation on ITO glass substrates without any catalysts or additives. The temperature of substrate was 450-500 °C. It was shown that the tungsten oxide nanotips are single-crystal grown along [0 1 0] direction. For commercial applications, field emission of the tungsten oxide nanotip arrays was characterized in a poor vacuum at room temperature. The field emission behaviors are in agreement with Fowler-Nordheim theory. The turn-on field is 2.8 V μm−1 as d is 0.3 mm. The excellent field emission performances indicated that the tungsten oxide nanotip arrays grown by the present approach are a good candidate for application in vacuum microelectronic devices.  相似文献   

5.
We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal.  相似文献   

6.
An original procedure has been developed for the quantitative analysis and microstructural interpretation of angle-resolved X-ray photoelectron spectra (AR-XPS) of very thin (<6 nm), multi-element oxide films as grown on metallic binary alloy substrates by, e.g., thermal or plasma oxidation. To this end, first an approach has been given to retrieve the different metallic, oxidic and oxygen primary zero-loss (PZL) intensities from the measured AR-XPS spectra of the bare and oxidized alloy. The principal equations for the determination of the oxide-film thickness, composition and constitution from the resolved PZL intensities have been presented. On this basis, various corresponding calculation routes have been distinguished. The procedure has been applied to the case of very thin (<6 nm), mixed (Mg, Al)-oxide films on bare Mg-based MgAl substrates as grown by dry, thermal oxidation at room temperature. The results obtained on the thickness, composition, defect structure and constitution of the oxide-film have been discussed as function of the bulk Al alloying content and the applied partial pressure of oxygen.  相似文献   

7.
Transparent conductive Al-doped zinc oxide (AZO) films with highly (0 0 2)-preferred orientation were deposited on quartz substrates at room temperature by RF magnetron sputtering. Optimization of deposition parameters was based on RF power, Ar pressure in the vacuum chamber, and distance between the target and substrate. The structural, electrical, and optical properties of the AZO thin films were investigated by X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The 250 nm thickness AZO films with an electrical resistivity as low as 4.62 × 10−4 Ω cm and an average optical transmission of 93.7% in the visible range were obtained at RF power of 300 W, Ar flow rate of 30 sccm, and target distance of 7 cm. The optical bandgap depends on the deposition condition, and was in the range of 3.75-3.86 eV. These results make the possibility for light emitting diodes (LEDs) and solar cells with AZO films as transparent electrodes, especially using lift-off process to achieve the transparent electrode pattern transfer.  相似文献   

8.
In this paper, we report a new route to synthesize novel magnetic hollow silica nanospheres (MHSNs) using polystyrene particles as sacrificial templates, and TEOS and Fe3O4 as precursors. TEM, EDS, XRD, and SQUID were applied to characterize MHSNs. TEM and EDS results show that the MHSNs consist of about 200 nm of hollow cores and ∼35 nm shells with ∼10 nm of Fe3O4 nanoparticles embedded. The polystyrene beads were successfully removed by immersing the as-prepared silica nanocomposite in a toluene solution. XRD results demonstrate that the Fe3O4 magnetic nanoparticles still keep spinel structure even heated at low temperature. The surface status of the polystyrene beads and Fe3O4 nanoparticles has an important effect on the formation of the MHSNs. The MHSNs present a superparamagnetism at room temperature by SQUID measurement. The MHSNs have potential applications in biosystem and nanomedicine.  相似文献   

9.
Mn-Zn ferrite nanoparticles with various amounts of cobalt doping have been synthesized by the co-precipitation method. The structure and morphology of the nanoparticles have been characterized by X-ray diffraction and transmission electron microscopy. The effects of cobalt ions on the crystallization behavior, lattice parameters and magnetic properties of Mn-Zn ferrites have been investigated. All the Co-doped ferrite nanoparticles calcined at 1150 °C possess a simple spinel structure and have an approximately spherical shape. The lattice parameters increase almost linearly with increasing Co content. The studies of magnetic properties show that the saturation magnetization Ms strongly depends on the Co content, having a maximum Ms value of 73 emu/g at a Co content of 1.0 at%, and all the Co-doped ferrites, with the average crystallite sizes ranging from 24.5 to 27.0 nm, exhibit superparamagnetism at room temperature.  相似文献   

10.
In this study, the electron beam evaporation method is used to generate an indium tin oxide (ITO) thin film on a glass substrate at room temperature. The surface characteristics of this ITO thin film are then investigated by means of an AFM (atomic force microscopy) method. The influence of postgrowth thermal annealing on the microstructure and surface morphology of ITO thin films are also examined. The results demonstrate that the film annealed at higher annealing temperature (300 °C) has higher surface roughness, which is due to the aggregation of the native grains into larger clusters upon annealing. The fractal analysis reveals that the value of fractal dimension Df falls within the range 2.16-2.20 depending upon the annealing temperatures and is calculated by the height-height correlation function.  相似文献   

11.
S. Pal 《Applied Surface Science》2007,253(6):3317-3325
Tungsten oxide (WO3) thin films were deposited by a modified hot filament chemical vapor deposition (HFCVD) technique using Si (1 0 0) substrates. The substrate temperature was varied from room temperature to 430 °C at an interval of 100 °C. The influence of the substrate temperature on the structural and optical properties of the WO3 films was studied. X-ray diffraction and Raman spectra show that as substrate temperature increases the film tends to crystallize from the amorphous state and the surface roughness decreases sharply after 230 °C as confirmed from AFM image analysis. Also from the X-ray analysis it is evident that the substrate orientation plays a key role in growth. There is a sharp peak for samples on Si substrate due to texturing. The film thickness also decreases as substrate temperature increases. UV-vis spectra show that as substrate temperature increases the film property changes from metallic to insulating behavior due to changing stoichiometry, which was confirmed by XPS analysis.  相似文献   

12.
Without intentionally heating the substrates, indium tin oxide (ITO) thin films of thicknesses from 72 nm to 447 nm were prepared on polyethylene terephthalate (PET) substrates by DC reactively magnetron sputtering with pre-deposition substrate surfaces plasma cleaning. The dependence of structural, electrical, and optical properties on the films thickness were systematically investigated. It was found that the crystal grain size increases, while the transmittance, the resistivity, and the sheet resistance decreases as the film thickness was increasing. The thickest film (∼447 nm) was found of the lowest sheet resistance 12.6 Ω/square, and its average optical transmittance (400-800 nm) and the 550 nm transmittance was 85.2% and 90.4%, respectively. The results indicate clearly that dependence of the structural, electrical, and optical properties of the films on the film thickness reflected the improvement of the film crystallinity with the film thickness.  相似文献   

13.
In this work the preparation, characterization and photoluminescence studies of pure and copper-doped ZnS nanophosphors are reported, which are prepared by using solid-state reaction technique at a temperature of 100 °C. The as-obtained samples were characterized by X-ray diffraction (XRD) and UV-VIS Reflectance spectroscopy. The XRD analysis confirms the formation of cubic phase of undoped as well as Cu2+-doped ZnS nanoparticles. Furthermore it shows that the average size of pure as well as copper-doped samples ranges from 15 to 50 nm. The room-temperature PL spectra of the undoped ZnS sample showed two main peaks centered at around 421 and 450 nm, which are the characteristic emissions of interstitial zinc and sulfur vacancies, respectively. The PL of the doped sample showed a broad-band emission spectrum centered at 465 nm accompanied with shoulders at around 425, 450 and 510 nm, which are the characteristic emission peaks of interstitial zinc, sulfur vacancies and Cu2+ ions, respectively. Our experimental results indicate that the PL spectrum confirms the presence of Cu2+ ions in the ZnS nanoparticles as expected.  相似文献   

14.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

15.
YVO4:Sm3+ films were deposited on Al2O3 (0 0 0 1) substrates at various oxygen pressures changing from 13.3 to 46.6 Pa by using the pulsed laser deposition method. The crystallinity and surface morphology of these films were investigated by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The XRD pattern confirmed that YVO4:Sm3+ film has zircon structure and the AFM study revealed that the films consist of homogeneous grains ranging from 100 to 400 nm. The room temperature photoluminescence (PL) spectra showed that the emitted radiation was dominated by a reddish-orange emission peak at 602 nm radiating from the transition of (4G5/26H7/2). The crystallinity, surface morphology, and photoluminescence spectra of thin-film phosphors were highly dependent on the deposition conditions, in particular, the substrate temperature. The surface roughness and photoluminescence intensity of these films showed similar behavior as a function of oxygen pressure.  相似文献   

16.
Using a co-precipitation method, perovskite-type manganese oxide La0.7Sr0.3MnO3 nanoparticles (NPs) with particle size 12 nm were prepared. Detailed studies of both 55Mn nuclear magnetic resonance and superparamagnetic resonance spectrum, completed by magnetic measurements, have been performed to obtain microscopic information on the local magnetic structure of the NP. Our results on nuclear dynamics provide direct evidence of formation of a magnetically dead layer, of the thickness ≈2 nm, at the particle surface. Temperature dependences of the magnetic resonance spectra have been measured to obtain information about complex magnetic properties of La0.7Sr0.3MnO3 fine-particle ensembles. In particular, electron paramagnetic resonance spectrum at 300 K shows a relatively narrow sharp line, but as the temperature decreases to 5 K, the apparent resonance field decreases and the line width considerably increases. The low-temperature blocking of the NPs magnetic moments has been clearly observed in the electron paramagnetic resonances. The blocking temperature depends on the measuring frequency and for the ensemble of 12 nm NPs at 9.244 GHz has been evaluated as 110 K.  相似文献   

17.
Self-assembled Ni-doped zinc oxide (Zn1−xNixO, x = 0.05, 0.10, 0.15, i.e., ZnNiO, nominal composition) nanorod arrays vertically grown on the ZnO seed layer covered glass along [0 0 1] direction were synthesized by hydrothermal method. Their images and structures have been characterized by scan electron microscope (SEM), X-ray diffraction (XRD) and Raman spectra, showing that Ni doping is beneficial to the formation of ZnO nanorods with hexagonal cross section and the enhancement of ZnO crystal quality. X-ray photoemission spectroscopy (XPS) study further demonstrated that Ni atoms were successfully doped into ZnO lattices. The photoluminescence (PL) spectra of ZnNiO samples show near bandedge emission (NBE) peaks at about 380 nm at a low excitation power and the NBE peak position redshifts while its intensity continuously increases with the increase of Ni doping concentration. With the excitation power increasing, the NBE peak redshifts from 380 nm to about 400 nm for ZnNiO nanorod arrays. The NBE mechanisms for ZnNiO nanorod arrays have been discussed, which is helpful for understanding their room temperature ferromagnetisms.  相似文献   

18.
The pulsed laser processing in liquid media is an attractive alternative to produce room temperature luminescent silicon nanocrystals (Si-ncs). We report on a blue luminescent Si-ncs preparation by using nanosecond pulsed laser (Nd:YAG, KrF excimer) processing in transparent polymer and water. The Si-ncs fabrication is assured by ablation of crystalline silicon target immersed in liquids. During the processing and following aging in liquids, oxide based liquid media, induce shell formation around fresh nanocrystals that provides a natural and stable form of surface passivation. The stable room temperature blue-photoluminescent Si-ncs are prepared with maxima located around ∼440 nm with corresponding optical band gap around ∼2.8 eV (∼430 nm). Due to the reduction of surface defects, the Si-ncs preparation in water, leads to a narrowing of full-width-half-maxima of the photoluminescence spectra.  相似文献   

19.
Spinel ferrite NiFe2O4 nanoparticles (?25 nm) in SiO2 matrix were prepared by sol–gel method. The phase and average crystallite size of the samples were determined by X-ray diffraction method and the particle size distributions were studied by a transmission electron microscope. Magnetic properties of the samples were investigated with different ferrite particle sizes and at various temperatures down to 10 K. Superparamagnetic properties were observed at room temperature when the particle size is less than 10 nm.In superparamagnetic state, the field dependence of magnetization follows Langevin function which was originally developed for paramagnetism. The effective anisotropy constant Keff is found to increase significantly with the decrease in particle volume and an order of magnitude higher than that of the bulk samples when the particle size is below 5 nm due to the dominance of surface anisotropy. In case of nanosized systems, the effect of size reduction on the law of approach to saturation has also been studied in detail.  相似文献   

20.
Tin-doped indium oxide (ITO) films with 200 nm thickness were deposited on glass substrates by DC magnetron sputtering at room temperature. And they were annealed by rapid thermal annealing (RTA) method in vacuum ambient at different temperature for 60 s. The effect of annealing temperature on the structural, electrical and optical properties of ITO films was investigated. As the RTA temperature increases, the resistivity of ITO films decreases dramatically, and the transmittance in the visible region increases obviously. The ITO film annealed at 600 °C by RTA in vacuum shows a resistivity of 1.6 × 10−4 Ω cm and a transmittance of 92%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号