首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen adsorption (physisorption) on the faujasite-type zeolite Mg-X was studied by means of variable-temperature (80-140 K) FT-IR spectroscopy. Perturbation of the adsorbed H2 molecules by the cationic adsorbing centres of the zeolite renders the H-H stretching mode IR active, at 4065 cm−1. Simultaneous measurement of IR absorbance and hydrogen equilibrium pressure, for a series of spectra recorded at the increasing temperature, allowed standard adsorption enthalpy and entropy to be determined. They resulted to be ΔH0 = −13 kJ mol−1 and ΔS0 = −114 J mol−1 K−1, respectively. Both, spectroscopic and thermodynamic results are discussed in the broader context of corresponding data for hydrogen adsorption on other alkali and alkaline-earth cation exchanged zeolites, showing that, while an approximate correlation exists between ΔH0 and H-H stretching frequency, deviations can be expected for the case of zeolites containing small metal cations.  相似文献   

2.
David Loffreda 《Surface science》2006,600(10):2103-2112
Adsorption thermodynamics based on density functional theory (DFT) calculations are exposed for the interaction of several multifunctional molecules with Pt and Au(1 1 0)-(1 × 2) surfaces. The Gibbs free adsorption energy explicitly depends on the adsorption internal energy, which is derived from DFT adsorption energy, and the vibrational entropy change during the chemisorption process. Zero-point energy (ZPE) corrections have been systematically applied to the adsorption energy. Moreover the vibrational entropy change has been computed on the basis of DFT harmonic frequencies (gas and adsorbed phases, clean surfaces), which have been extended to all the adsorbate vibrations and the metallic surface phonons. The phase diagrams plotted in realistic conditions of temperature (from 100 to 400 K) and pressure (0.15 atm) show that the ZPE corrected adsorption energy is the main contribution. When strong chemisorption is considered on the Pt surface, the multifunctional molecules are adsorbed on the surface in the considered temperature range. In contrast for weak chemisorption on the Au surface, the thermodynamic results should be held cautiously. The systematic errors of the model (choice of the functional, configurational entropy and vibrational entropy) make difficult the prediction of the adsorption-desorption phase boundaries.  相似文献   

3.
Analytic equations relating the rate of the incorporation of silicon atoms into a growing crystal to the characteristic frequency of the pyrolysis of silane molecules on the surface of silicon were obtained over the temperature range corresponding to the epitaxial growth of silicon films. As distinct from the earlier works, it was assumed that adsorbed silicon atoms and monosilane molecules formed double bonds with the surface. The data of technological experiments for the most extensively used pyrolysis models obtained thus far were used to determine the region of the characteristic frequencies of the decomposition of hydride molecule radicals adsorbed on the surface of a silicon plate over the temperature range 450–700°C. The temperature dependence of the frequency of monosilane molecule decomposition was shown to be to a great extent determined by the form of the temperature dependence of the $ \tilde v_{SiH_2 }^0 $ \tilde v_{SiH_2 }^0 preexponential factor. It was also found that the characteristic frequency of the decomposition of silane molecules was sensitive to the stage of pyrolysis at which hydrogen atoms released from silane molecules were captured by the surface. Decomposition occurred at the highest rate if hydrogen molecules were adsorbed at the stage of the adsorption of monosilane. The lowest rate of decomposition was observed if hydrogen molecules were adsorbed at the stage of the decomposition of radicals already captured by the surface. The temperature dependence of the coefficient of adsorption of monosilane molecules was characterized by a negative activation energy of the process for almost all the most important system models over the temperature range of growth. At elevated growth temperatures, the adsorption of monosilane molecules by the surface of silicon proceeded via an intermediate state characterized by the difference of desorption and chemisorption energies on the order of 0.28 eV.  相似文献   

4.
A density functional theory (DFT) method has been applied to study the adsorption of thiophenic compounds such as thiophene (TP), benzothiophene (BT), dibenzothiophene (DBT) on cation-exchanged Cu(I)Y, Ni(II)Y, Ce(III)Y zeolites. All of calculations were carried out by the generalized gradient approximation (GGA) with the BLYP exchange-correlation functional and DNP basis set. The calculated results indicate that the stable adsorption configuration of TP molecule adsorbed on the Cu(I)Y is the η5 adsorption mode, whereas for BT and DBT, the η1S adsorption mode was found for the both molecules. Only the η1S adsorption mode can be obtained for the three thiophenic compounds adsorbed on the Ni(II)Y. The η5 adsorption mode can be ascribed to the adsorption of thiophene molecules on the Ce(III)Y, but the competition of different adsorption modes could possibly occur during the adsorption process of BT and DBT on the Ce(III)Y. Moreover, the selectivity of TP adsorbed on the adsorbents is in the order of Cu(I)Y > Ce(III)Y > Ni(II)Y, while for BT and DBT, the order is Cu(I)Y > Ni(II)Y > Ce(III)Y.  相似文献   

5.
H2 interaction with thin Rh films deposited on Pyrex glass under UHV conditions has been studied by simultaneous measurement of work function changes ΔΦ and hydrogen pressure P, at selected constant temperatures: 78 and 298 K. Prior to the adsorption experiments the thin film topography was illustrated using the AFM and STM methods. The influence of hydrogen adsorption on the resistance of thin Rh film was examined in the course of an independent experiment. The number of sites accessible for adsorption on the thin Rh film surface was found determining population of oxygen adatoms within the monolayer at 78 K, when incorporation of these adspecies below the surface is negligible. It was established that at all examined temperatures hydrogen adsorption led to coverage Θ approaching 1 under equilibrium pressure below 10−3 Pa, increasing the work function. Under higher H2 pressure an additional uptake of hydrogen leading to Θ ∼ 1.68 at 298 K, and to Θ ∼ 2 at 78 K is reached. On this surface at low temperatures there exist weakly bound, reversibly adsorbed, positively charged adspecies characteristic for hydrogen adsorption on transition metal hydrides. The change of thin Rh film resistance caused by hydrogen adsorption was not measurable.  相似文献   

6.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-FER results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted acid groups. This hydrogen bonding interaction leads to activation, in the IR, of the fundamental NN stretching mode, which appears at 2331 cm−1. From the infrared spectra taken over a temperature range, while simultaneously recording integrated IR absorbance, temperature and nitrogen equilibrium pressure, the thermodynamics of the adsorption process was studied. The standard adsorption enthalpy and entropy resulted to be ΔH° = −20(±1) kJ mol−1 and ΔS° = −131(±10) J mol−1 K−1, respectively.  相似文献   

7.
The adsorption of ethylene by zeolite NaY and zeolite NaY modified by cation exchange with potassium, rubidium, and cesium ions was studied. Cation exchanges were carried out using KNO3, RbNO3, and CsNO3 in the concentration ranges of 0.2-10 mM. XRD patterns and specific surface areas illustrated that modification of NaY zeolite by very dilute solutions containing K+, Rb+ and Cs+ did not lead to significant changes in the crystallinity. Analysis of metals content (ICP-OES) showed that Cs+ can replace Na+ better than Rb+ and K+. Particle analysis indicated slight decreases in surface area but pore volumes and pore diameters remained unchanged. Ethylene adsorption isotherms indicated that Na-Y zeolite which was modified by 5.0 mM KNO3, 0.5 mM RbNO3 and 1.0 mM CsNO3 could adsorb ethylene better than zeolite Na-Y. K-NaY zeolite adsorbed up to 102.45 cm3/g ethylene, while Rb-NaY and Cs-NaY zeolites adsorbed up to 98.50 cm3/g and 90.15 cm3/g ethylene, respectively. Ethylene adsorption capacities depended on number of adsorption sites and surface interactions.  相似文献   

8.
Initial hydrogen adsorption on the Si(1 1 1) 7 × 7 surface was studied by scanning tunneling microscopy (STM) in an ultrahigh vacuum. Room temperature adsorbed hydrogen on the adatom in the 7 × 7 reconstruction led to depression of adatoms in the STM images. The hydrogen uptake curve at the adatom site as a function of hydrogen exposure time was well represented by Langmuir adsorption. No preferential adsorption was seen among four inequivalent adatoms in the 7 × 7 reconstruction. Adsorption of the adjacent center and corner adatoms respectively showed ∼10% higher adsorption. Even though the number of reacted adatoms in the half unit of the 7 × 7 reconstruction was statistically random, the number of reacted adatoms in the nearest neighbor half unit was enhanced as the number of reacted sites increased in the half unit.  相似文献   

9.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

10.
The frequency response (FR) technique has been applied to study adsorption mechanism of ethene in parent Hmordenite (HMor) and the HMor (CuO/HMor, Cs+/HMor) which were modified by CuO and Cs+. The FR spectra of ethene in HMor, CuO/HMor and Cs+/HMor were recorded at temperatures between 252 and 273 K under the pressure of 0.2-30.0 Torr, and then those FR spectra were investigated. The results showed that two parallel adsorption processes exist in ethene/HMor system. Those two processes were attributed to adsorption process of ethene on proton acid sites (low frequency adsorption) and on hydrogen cation sites (high frequency adsorption); meanwhile the number of sites available for adsorption of ethene is 0.692 and 0.828 mmol g−1, respectively. The number of adsorption sites in low frequency is increased by the introduction of CuO which is located among the proton acid sites but covered the hydrogen ion sites in high frequency. Chemical adsorption of ethene is the main sorption process in CuO/HMor. The number of adsorption sites in low frequency is decreased by the introduction of Cs+ which counteracted proton acid sites in low frequency. Physical adsorption is the main sorption process in Cs+/HMor channels. The optimum content of CuO for modification is 5% (weight/weight). Combining the FR spectra and other methods such as isotherms and Langmuir model, a thorough understanding of the ethene adsorption processes on zeolites can be achieved.  相似文献   

11.
We investigated the adsorption of a 6-dimers Si(1 0 0)2 × 1 surface as a function of coverage and adsorption type (molecular/dissociative) by first principle calculations. In particular, we performed calculations on models with 2, 3, 4 and 6 phenol molecules, corresponding to coverage Θ = 0.34, 0.5, 0.67 and 1. We found that total adsorption energy, when at least one phenol is in a molecular state is lower than the sum of the corresponding singly adsorbed molecules. The dissociative adsorption of multiple molecules, both in parallel and switched configuration is most favoured for a coverage Θ = 0.34 (2.6 eV per adsorbed molecule). This values decreases to 2.0 eV and remains constant till the coverage 1 is reached.The energy barrier for the molecular-to-dissociated transition of a phenol molecule, in presence of another dissociatively adsorbed molecule is ∼0.008 eV and it is similar to the value in case of single adsorption. Possible hydrogen displacements were also considered.  相似文献   

12.
Activated multi-walled carbon nanotubes were prepared with appended vanadium as a hydrogen storage medium. The pore structure was significantly improved by an activation process that was studied using Raman spectroscopy, field emission transmission electron microscopy and pore analysis techniques. X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the vanadium catalyst was introduced into the carbon nanotubes in controlled proportions, forming V8C7. The improved pore structure functioned as a path through the carbon nanotubes that encouraged hydrogen molecule adsorption, and the introduced vanadium catalyst led to high levels of hydrogen storage through the dissociation of hydrogen molecules via the spill-over phenomenon. The hydrogen storage behavior was investigated by electrical resistance measurements for the hydrogen adsorbed on a prepared sample. The proposed mechanism of hydrogen storage suggests that the vanadium catalyst increases not only the amount of hydrogen that is stored but also the speed at which it is stored. A hydrogen storage capacity of 2.26 wt.% was achieved with the activation effects and the vanadium catalyst at 30 °C and 10 MPa.  相似文献   

13.
M.F. Luo  G.R. Hu 《Surface science》2007,601(6):1461-1466
The surface structures of atomic hydrogen adsorbed on Cu(1 1 1) surface have been studied theoretically by using density-functional-theory calculations. The results show that 0.67 ML hydrogen adsorbed on threefold hollow sites forming (3 × 1) superstructure and 0.5 ML hydrogen adsorbed on threefold hollow sites forming (2 × 2)-2H superstructure with central H at trigonal sites induce most significant substrate reconstructions and that fits best the observed (3 × 3) and (2 × 2) LEED patterns, respectively. The potential energies for the hydrogen in these two models are also lower than those in other competing models. Accordingly, these two models are the most preferable structures for 0.5-0.67 ML and 0.3-0.5 ML hydrogen adsorbed on the Cu(1 1 1) surface. In addition, the calculations also suggest that the lateral H-H interaction is not of simple repulsion and how the adsorbed hydrogen is arrayed is important in modifying the adsorption energy.  相似文献   

14.
The adsorption of vinyl fluoride on the rutile TiO2(1 1 0) surface has been simulated, on the basis of a recently proposed experimental model, using hybrid-exchange density functional theory. Different surface coverages have been considered and the lateral interaction between adsorbed vinyl fluoride molecules has been quantified through a simple model of nearest and next nearest neighbouring molecules. The vibrational frequencies of the adsorbed molecule have been calculated and are found to be in excellent agreement with those observed providing support for the proposed adsorption model. The effect of the adsorption on the electronic structure of the molecule and the surface have been characterised by computing electrostatic potential maps and the local density of states.  相似文献   

15.
E. Tiferet  I. Jacob 《Surface science》2007,601(21):4925-4930
Traces of about 2% water vapor are sufficient to inhibit hydrogen dissociation and chemisorption on uranium surfaces, under low pressure exposures, at room temperature. The efficiency of the inhibition increases with temperature in the range of 200 - 400 K. The inhibition effect is also influenced by the extent of residual strain of the sample, with increasing inhibition efficiencies exhibited by a less strained surface. O2, in contrast to H2O, is not an inhibitor to surface adsorption and dissociation of hydrogen. Three types of mechanisms are discussed in order to account for the above inhibition effect of water. It is concluded that the most probable mechanism involves the reversible adsorption of water molecules on hydrogen dissociation sites causing their “blocking”.  相似文献   

16.
We have analyzed the mechanism of melting of layers adsorbed in cylindrical pores of porous materials. The goal was to understand the melting mechanism of simple fluids adsorbed in pores with heterogeneous wall surface. The studied system was a monolayer of methane molecules adsorbed in MCM-41 pore of diameter d = 4 nm. Both experimental (neutron scattering) and simulation (Monte Carlo) results proved extremely strong influence of the wall roughness on the melting mechanism. The most striking difference between melting on smooth and rough surfaces was in the temperatures of the transition. The transformation between solid-like and liquid-like monolayer phases adsorbed on a rough surface was observed in a very large temperature range and the solid like properties were observed even above the bulk methane melting temperature.  相似文献   

17.
Sequential stages of formation of a self-assembled monolayer of flat-lying 2,6-dimethylpyridine molecules on a single crystal Cu(1 1 0) surface have been observed by low-temperature scanning tunneling microscopy (LT-STM). At an adsorption temperature of 10 K, all of the molecules are randomly distributed at low coverage upon adsorption. The isolated molecules align their molecular axes parallel to the 〈0 0 1〉 azimuth of the Cu lattice. The nitrogen atom in the molecule is located at the four-fold hollow site. Upon annealing to 100 K, the molecules associate to form head-to-head dimers. The dimer units involve a pair of weak hydrogen bonds between methyl group-hydrogen atoms and N moieties on adjacent molecules, forming a core structure for further growth. In a later stage of self-assembly, single head-to-tail weak hydrogen bonds between ring C-H bonds and N moieties form in chains on the periphery of the central cores, leading to larger domains with a c(6 × 2) overlayer structure.  相似文献   

18.
Adsorption of pure CO2 on SBA-15 impregnated with branched polyethyleneimine (PEI) has been studied. Materials were prepared by impregnating the pore surface of SBA-15 mesoporous silica with different amounts of branched PEI (10, 30, 50 and 70 wt%). Textural properties, elemental analysis and low angle XRD measurements of the prepared samples showed a progressive pore filling of SBA-15 as PEI loading was increased. Pure CO2 adsorption isotherms on these modified SBA-15 materials were obtained at 45 °C, showing high adsorption efficiency for CO2 removal at 1 bar. Chemisorption of CO2 on amino sites of the modified SBA-15 seems to be the main adsorption mechanism. PEI content of impregnated SBA-15 influences the adsorption capacity of the material, being a relevant variable for CO2 removal by adsorption. Temperature effect on adsorption was also studied in the range 25-75 °C, showing that temperature strongly influences CO2 adsorption capacity. Adsorption capacity was also tested after regeneration of the PEI-impregnated SBA-15 materials. Our results show that these branched PEI-impregnated materials are very efficient even at low pressure and after several adsorption-regeneration cycles.  相似文献   

19.
A.P. Farkas 《Surface science》2007,601(1):193-200
The adsorption, desorption and dissociation of ethanol have been investigated by work function, thermal desorption (TPD) and high resolution electron energy loss (HREELS) spectroscopic measurements on Mo2C/Mo(1 0 0). Adsorption of ethanol on this sample at 100 K led to a work function decrease suggesting that the adsorbed layer has a positive outward dipole moment By means of TPD we distinguished three adsorption states, condensed layer with a Tp = 162 K, chemisorbed ethanol with Tp = 346 K and irreversibly bonded species which decomposes to different compounds. These are hydrogen, acetaldehyde, methane, ethylene and CO. From the comparison of the Tp values with those obtained following their adsorption on Mo2C it was inferred that the desorption of methane and ethylene is reaction limited, while that of hydrogen is desorption limited process. HREEL spectra obtained at 100 K indicated that at lower exposure ethanol undergoes dissociation to give ethoxy species, whereas at high exposure molecularly adsorbed ethanol also exists on the surface. Analysis of the spectral changes in HREELS observed for annealed surface assisted to ascertain the reaction pathways of the decomposition of adsorbed ethanol.  相似文献   

20.
In this work, we performed density functional calculations to examine the molecular adsorption states of thiophene on β-SiC(0 0 1)-2×1 surface. A number of possible adsorption geometries are considered into two groups as the polymeric thiophene chain and the individual molecules covalently bonded onto the surface. The results show that the polymeric chain on the surface is the less stable adsorption case and individual arch like adsorption case structure is more stable than others. In all adsorption cases, the adsorbed SiC surfaces are characterized as different semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号