首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 3DAP allows to image a material in 3D on a nearly atomic scale. It is based on the field evaporation occurring at the surface of a biased tip like shape specimen with an end radius of 50 nm. Surface atoms are removed one by one from the tip by means of fs laser pulses so that the physical process involved in this laser enhanced field evaporation might correspond to the very early stages of the ablation process. This technique makes possible to distinguish between different regimes of material removal such as thermal evaporation or in the case of metals or semiconductors an evaporation assisted by the rectification of the optical field at the surface. In this paper the principle of the 3DAP is presented and the underlying physics involved in the field evaporation assisted by femtosecond laser pulses is discussed.  相似文献   

2.
The physical origin and the dynamics of the ultrafast optical nonlinear response of noble metal nanoparticles are analyzed around the surface plasmon resonance frequency using extension of the bulk metal electron kinetics and band structure models. The computed spectral and temporal responses are found to be in very good agreement with the measured ones in silver when taking into account the impact of electron excitation on both the interband absorption and electron optical scattering rate. A good reproduction of the strong excitation regime experimental results is also obtained in the case of gold, with a dominant contribution of the interband effect. Received: 4 July 2001 / Published online: 10 October 2001  相似文献   

3.
We report ultrafast third-order nonlinear optical (NLO) properties of several chalcogenide glasses GeSx (x = 1.8, 2.0, 2.5) measured by femtosecond time-resolved optical Kerr gate technique at 82Ohm. The third-order nonlinear susceptibility of GeS1.8 glass is determined to be as large as 1.41 ×10^-12 esu, which is the maximum value of the third order nonlinear susceptibility Х^(3) for the three compositions investigated. The symmetric Gauss profiles of optical Kerr signals reveal the nature of ultrafast nonlinear response of these samples, which are originated from the ultrafast polarization of the electron clouds. By detailed microstructural analysis of these glasses based on the chain-crossing model (CCM) and the random-covalent-network model (RCNM), it can be concluded that Х^(3) value of GeSx glasses can be enhanced greatly by S-S covalent bonds or S3 Ge-GeS3 ethane-l&e units.  相似文献   

4.
Ultrafast relaxation processes and transient two-photon absorption are studied in a novel porphyrin side-chain polymer, 5-hydroxy-10,15,20-triphenyl-porphyrin-poly(glycidyl methacrylate) (HTPP-PGMA), by using picosecond luminescence spectroscopy and femtosecond pump--probe techniques. HTPP-PGMA exhibits the ultrafast initial luminescence decay (~300ps), which is absent in the conventional porphyrin monomer such as TPP. Enhanced two-photon absorption was observed in HTPP-PGMA; the corresponding Im x(3) is about 2.8× 1011esu, which is almost one order of magnitude larger than that of the conventional porphyrin monomer (TPP) (~1.3×1012esu). The ultrafast energy transfer plays an important role in the excited-state relaxation dynamics observed in HTPP-PGMA. The potential application of HTPP-PGMA in optical switching is discussed.  相似文献   

5.
6.
A sodium-filled Fabry-Perot resonator shows many different types of irregular behavior. A sophisticated experimental apparatus allows reproducible measurements of oscillation scenarios leading to chaos and thus permits a detailed classification of the different phenomena. A quantitative explanation — featuring a new mechanism — for the best reproducible class of chaotic oscillations is given.  相似文献   

7.
We present a comparison of the intensity and the electric field measured from an optically pumped FIR NH3 laser showing instabilities with the respective results obtained from numerical integration of the Lorenz model extended to allow for detuning of the laser cavity with respect to emission line center. Good agreement between experimental and numerical results for high gas pressure suggests that this laser is appropriately described by the Lorenz model for higher operating pressure, while in the low pressure domain qualitative differences are found.Dedicated to Prof. Dr. Herbert Welling on the occasion of his 60th birthdayVisiting from Bryn Mawr College, Bryn Mawr, PA 19010, USA  相似文献   

8.
We demonstrate an optical limiter for ultra-short (∼100-fs) laser pulses. The device has a dynamic range (= damage energy/onset-of-limiting energy) of more than 10000 and an onset-of-limiting energy of only ∼10 nJ. The output-pulse energy is kept below 1.3 μJ. The limiting mechanism is based on two-photon absorption and refractive nonlinearities in a 20-mm piece of ZnSe. We discuss the importance of the different nonlinearities, damage issues, and guidelines for the construction of the device. Received: 20 December 2001 / Revised version: 25 March 2002 / Published online: 8 May 2002  相似文献   

9.
Two soluble polymer grafted multi-walled carbon nanotubes (MWNTs), including poly(N-vinylcarbazole)-MWNTs and poly(methyl methacrylate)-MWNTs, are synthesized. Their nonlinear optical properties and opticaJ limiting (OL) performances are investigated by z-scan method with 527nm nanosecond laser pulses. These grafted MWNTs dissolved in chloroform show much better optical limiting performance than those of MWNTs and C60 in toluene solution. Nonlinear absorption and nonlinear scattering mechanism are taken into consideration for explaining the observed results. The comparison of the experimental results shows that nonlinear absorption is the dominant mechanism for OL performance of these new samples.  相似文献   

10.
Three soluble polystyrene grafted multi-walled carbon nanotube (MWNT) samples are synthesized, and their optical performance and nonlinear scattering properties are investigated by z-scan method using nanosecond pulses of 532 nm from a frequency-doubled Q-switched Nd: YLF laser. Analysis of the experimental results shows that other than nonlinear scattering, nonlinear absorption plays a major role in optical limiting performance of these stable and well-dispersed suspensions. These new synthesized materials which can be better dispersed in common organic solvents than MWNT itself can be considered as potential sources for further optical applications.  相似文献   

11.
A method is introduced to investigate organic functionalizations on silicon by laser-induced thermal desorption (LITD), where well-ordered Si(1 1 1)-(1 × 1):H(D) surfaces are used to determine the desorption temperature as a function of laser fluence. To demonstrate the potential of this technique silicon surfaces with ultrathin oxide layers were functionalized with organic end groups. The species desorbed with focused XeCl laser pulses were monitored at an oblique angle and their time-of-flight (TOF) distributions were measured with a quadrupole mass analyzer after electron impact ionization. By assuming a negligible contribution of the oxide and organic layers to the heating effect, the TOF temperatures measured for Si(1 1 1)-(1 × 1):H(D) could be used to determine the mass of the desorbed species. Detailed results are presented for dimethylsilyl (DMS), bromomethyldimethylsilyl (BMDMS), and chloromethyldimethylsilyl (CMDMS) terminated surfaces which were prepared by silanization with suitable chloro and disilazane compounds. While for the DMS termination dimethylsilanol (76 u) is desorbed as a single species, clearly identifying the terminating group, in the case of BMDMS and CMDMS further fragmentation of the end group occurs at the surface.  相似文献   

12.
Characterization of polycyclic aromatic hydrocarbons (PAHs) samples has been performed by laser desorption combined with multi-photon ionization technique using two different geometries of the ionization laser beam. This comparative study evidences the strong influence of ionization laser fluence on PAH fragmentation. Through a ∼103 enlargement of the ionization probe volume and 104 reduction of laser fluence over previous studies, fragment free mass spectra are obtained with higher sensitivity and selectivity. The ability to measure fragment free PAH mass spectra is a very important step in the end goal of measuring complex unknown mixtures of PAH desorbed from solid surface such as soot samples.  相似文献   

13.
The physical mechanism of two-photon response (TPR) in semi-insulating GaAs is studied. The measured photocurrent generated from the fabricated hemispherical GaAs sample responding to 1.3μm continuous wave laser shows a quadratic dependence on the coupled optical power and no saturation with the bias. The angular dependence of the photocurrent on the azimuth is in agreement with the anisotropy of double-frequency absorption (DFA) in GaAs single crystals. These results demonstrate DFA is the dominant mechanism of TPR in GaAs.  相似文献   

14.
We investigate the field and temperature dependence of the rate of ion formation by important mechanisms in Liquid Metal Ion Sources (LMIS). In addition to field evaporation and field ionization of thermally evaporated neutrals we identify a third mechanism, thermal-field evaporation, which is intermediate between the other two mechanisms. Field (or thermal-field) evaporation is found to be dominant in the normal operating regime of LMIS in agreement with the conclusions of Prewett et al. A jet-like protrusion model of LMIS shape, which is consistent with direct observations, allows high temperatures to be reached with a reasonable power input to the source. Thus a small, but sometimes important, contribution to the total ion current from field ionization of thermally evaporated atoms is expected.  相似文献   

15.
Nonlinear thickness dependence of two-photon absorptance in Al2O3 films   总被引:1,自引:0,他引:1  
Linear and nonlinear absorptance in Al2O3 films of different optical thicknesses are investigated using an ArF laser calorimeter. While the linear absorptance at 193 nm shows the expected linear increase, nonlinear absorptance increases quadratically with increasing film thickness. Thus, it cannot be described by a constant nonlinear absorption coefficient β. The experimental findings are explained by a simple phenomenological approach using excited states with a finite interaction length longer than the actual film thickness. a new material constant Γ is introduced, which describes the nonlinear absorptance behavior correctly. Received: 19 May 2000 / Accepted: 22 May 2000 / Published online: 13 July 2000  相似文献   

16.
Plasma-enhanced chemical vapor deposition (PECVD) method was employed to synthesize the Fe-catalyzed carbon nanotubes (CNTs). Hf films were deposited onto the synthesized CNTs, followed by heat treatment at 1200 °C which could form HfC. Field emission properties indicate that the HfC-coated CNTs have good emission current density due to low work function of HfC and also keep stable emission characteristics under poor vacuum owing to the chemical inertness of HfC. Consequently, field emission characteristics of the CNTs can be improved by the HfC-coated surface treatment compared with the synthesized CNTs.  相似文献   

17.
18.
Investigation of ferroelectric coercive field in LiNbO3   总被引:1,自引:0,他引:1  
3 using the pulse-field method was performed. It was found that the coercive field varies with time after domain reversal. The possible origins of this phenomenon are discussed. Received: 27 January 1997/Accepted: 7 April 1997  相似文献   

19.
We examine blast waves generated in air during irradiation of absorbing samples with Nd: YAG laser pulses of fluences exceeding the ablation threshold. Blast waves were detected simultaneously by a wideband microphone and a laser beam deflection probe. By a comparative analysis of both signals in the time and frequency domain we investigate characteristic features of their nonlinear waveform evolution. To explain the observed phenomena we employ the weak shock solution of the point explosion model.  相似文献   

20.
We report the results of the first measurements of the non-linear Kerr refractive index, n2, for LiBaF3 and LiLuF4 crystal hosts, known as prospective UV-emitting tunable laser media when doped with Ce3+ ions. These n2 values (2.7×10-16 and 1.5×10-16 cm2/W at 532 nm, respectively), obtained using the well-established Z-scan technique, are important for the characterization of new optical materials particularly in relation to their potential ultrafast applications. Received: 6 June 2000 / Published online: 5 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号