首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对上百个FenB2和Fen(n=1~6)原子簇模型进行密度泛函理论计算,用来模拟非晶态合金Fe-B体系的局域结构,并考察类金属元素硼的引入对体系性质的影响。将优化构型的键长和电荷分布与实验数值进行比较,发现本文所使用的原子簇模型在一定程度上可以真实、准确地反映非晶态合金Fe-B体系的局域结构。利用这些构型,我们对其键级、电子、催化以及磁学性质进行了讨论。结果表明:原子簇中均存在着强烈的Fe-B键作用,其中在高铁含量原子簇中Fe-Fe键的作用也较为明显;综合热力学、费米能级及态密度的研究结果,发现原子簇Fe4B2在合成氨和固氮过程中有可能表现出更为优越的催化活性。结合对原子簇Fen和FenB2(n=1~6)平均3d轨道布居数的分析,发现原子簇FenB2(n=1~6)的平均磁矩均小于相应原子簇Fen(n=1~6)的理论数值和纯金属铁的实验数值(5.7~6.0 BM),也就是说原子簇FenB2(n=1~6)均表现出软磁性。  相似文献   

2.
A homologous series of anionic gas-phase clusters of dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid) generated via electrospray ionization (ESI) are investigated using collision-induced dissociation (CID). Sodiated clusters with the composition (Na(+))(2)(n+1)(dicarboxylate(2-)(n+1) for singly charged anionic clusters, where n = 1-4, are observed as major gas-phase species. Isolation of the clusters followed by CID results mainly in sequential loss of disodium dicarboxylate moieties for the clusters of succinic acid, glutaric acid, and adipic acid (C4-C6). However, all oxalate (C2) and malonate (C3) clusters and dimers (n = 1) of succinate (C4) and glutarate (C5) exhibit more complex chemistry initiated by collision of the activated cluster with water molecules. For example, with water addition, malonate clusters dissociate to yield sodium acetate, carbon dioxide, and sodium hydroxide. More generally, water molecules serve as proton donors for reacting dicarboxylate anions in the cluster and introduce energetically favorable dissociation pathways not otherwise available. Density functional theory (DFT) calculations of the binding energy of the cluster correlate well with the cluster phase reactions of oxalate and malonate clusters. Clusters of larger dicarboxylate ions (C4-C6) are more weakly bound, facilitating the sequential loss of disodium dicarboxylate moieties. The more strongly bound small dicarboxylate anions (oxalate and malonate) preferentially react with water molecules rather than dissociate to lose disodium dicarboxylate monomers when collisionally activated. Implications of these results for the atmospheric aerosol chemistry of dicarboxylic acids are discussed.  相似文献   

3.
Clusters exhibit an enhancement in ionization rates under intense, ultrafast laser pulses compared to their molecular/atomic counterparts. Studies of ionization enhancement of weakly bound molecules to clusters have not been previously characterized and quantified. We demonstrate that weakly bound ClO to (H(2)O)(n) (n = 1-12) clusters and weakly bound HCl to (H(2)O)(n) (n = 1-12) clusters produce high atomic charge states of chlorine via Coulomb explosion. Density functional theory (DFT) was used to qualitatively compare the interaction energy of ClO with respect to the number of water molecules as well as HCl with respect to the number of water molecules. The chlorine ion signal intensity for each atomic charge state was observed to be dependent on the molecule-cluster bond strength. The observed ionization enhancement was quantified using semiclassical tunneling theory, and it was found that the Cl(3+-5+) and O(2+) charge states are enhanced in ionization. Possible mechanisms of ionization enhancement are explored for weakly bound chlorine species.  相似文献   

4.
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.  相似文献   

5.
Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.  相似文献   

6.
Clusters of tetracene molecules with different numbers of attached (Ar)(N), (Ne)(N) and (H(2))(N) particles (N = 1-2000) are assembled inside superfluid He nanodroplets and studied via laser-induced fluorescence. The frequency shift of the fluorescence spectrum of the tetracene molecules is studied as a function of cluster size and pickup order of tetracene and cluster species. For (Ar)(N) and (Ne)(N) clusters, our results indicate that the tetracene molecules reside inside the clusters when tetracene is captured by the He nanodroplet before the cluster species; conversely, the tetracene molecules stay on the surface of the clusters when tetracene is captured after the cluster species. In the case of (H(2))(N) clusters, however, tetracene molecules reside inside the (H(2))(N) clusters irrespective of the pickup order. We conclude that (Ar)(N) and (Ne)(N) clusters are rigid at T = 0.38 K, while (H(2))(N) clusters of up to N = 2000 remain fluxional at the same temperature. The results may also indicate the occurrence of heterogeneous nucleation of the (H(2))(N) clusters, which is induced by the interaction with tetracene chromophore molecules.  相似文献   

7.
Multi-stage mass spectrometry (MSn) on [(M + Ag - H)x + Ag]+ precursor ions (where M = an amino acid such as glycine or N,N-dimethylglycine) results in the formation of stable silver (Ag3+, Ag5+ and Ag7+) and silver hydride (Ag2H+, Ag4H+ and Ag6H+) cluster cations in the gas phase. Deuterium labelling studies reveal that the source of the hydride can be either from the alpha carbon or from one of the heteroatoms. When M = glycine, the silver cyanide clusters Ag4CN+ and Ag5(H,C,N)+ are also observed. Collision induced dissociation (CID) and DFT calculations were carried out on each of these clusters to shed some light on their possible structures. CID of the Agn+ and Ag(n-1)H+ clusters generally results in the formation of the same Ag(n-2)+ product ions via the loss of Ag2 and AgH respectively. DFT calculations also reveal that the Agn+ and Ag(n-1)H+ clusters have similar structural features and that the Ag(n-1)H+ clusters are only slightly less stable than their all silver counterparts. In addition, Agn+ and Ag(n-1)H+ clusters react with 2-propanol and 2-butylamine via similar pathways, with multiple ligand addition occurring and a coupled deamination-dehydration reaction occurring upon condensation of a third (for Ag2H+) or a fourth (for all other silver clusters) 2-butylamine molecule onto the clusters. Taken together, these results suggest that the Agn+ and Ag(n-1)H+ clusters are structurally related via the replacement of a silver atom with a hydrogen atom. This replacement does not dramatically alter the cluster stability or its unimolecular or bimolecular chemistry with the 2-propanol and 2-butylamine reagents.  相似文献   

8.
van der Waals cluster (SO2)n is investigated by using single photon ionization of a 26.5 eV soft x-ray laser. During the ionization process, neutral clusters suffer a small fragmentation because almost all energy is taken away by the photoelectron and a small part of the photon energy is deposited into the (SO2)n cluster. The distribution of (SO2)n clusters decreases roughly exponentially with increasing cluster size. The photoionization dissociation fraction of I[(SO2)(n-1)SO+] / I[(SO2)n+] decreases with increasing cluster size due to the formation of cluster. The metastable dissociation rate constants of (SO2)n+ are measured in the range of (0.6-1.5) x 10(4) s(-1) for cluster sizes 5< or =n< or =16. Mixed SO2-H2O clusters are studied at different experimental conditions. At the condition of high SO2 concentration (20% SO2 partial pressure), (SO2)n+ cluster ions dominate the mass spectrum, and the unprotonated mixed cluster ions (SO2)nH2O+ (1< or =n< or =5) are observed. At the condition of low SO2 concentration (5% SO2 partial pressure) (H2O)nH+ cluster ions are the dominant signals, and protonated cluster ions (SO2)(H2O)nH+ are observed. The mixed clusters, containing only one SO2 or H2O molecule, SO2(H2O)nH+ and (SO2)nH2O+ are observed, respectively.  相似文献   

9.
Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.  相似文献   

10.
Infrared predissociation spectroscopy of vacuum ultraviolet-pumped ion (IRPDS-VUV-PI) is performed on ammonia cluster cations (NH3)n+ (n=2-4) that are produced by VUV photoionization in supersonic jets. The structures of (NH3)2+ and (NH3)4+ are determined through the observation of infrared spectra and vibrational calculations based on ab initio calculations at the MP2/6-31G** and 6-31++G** levels. (NH3)2+ is found to be of the "hydrogen-transferred" form having the (H3N+-...NH2) composition. In contrast, (NH3)4+ exhibits the "head-to-head" dimer cation (H3...NH3+ core structure, where the positive charge is shared between two ammonia molecules in the core, and two other molecules are hydrogen bonded onto the core. An unequivocal assignment of the infrared spectrum of (NH3)3+ has not been achieved, because the presence of two isomeric structures could be suggested by the observed spectrum and theoretical calculations.  相似文献   

11.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

12.
The stepwise binding energies (DeltaHdegree(n-1,n)) of 1-8 water molecules to benzene(.+) [Bz(.+)(H2O)n] were determined by equilibrium measurements using an ion mobility cell. The stepwise hydration energies, DeltaHdegree(n-1,n), are nearly constant at 8.5 +/- 1 kcal mol-1 from n = 1-6. Calculations show that in the n = 1-4 clusters, the benzene(.+) ion retains over 90% of the charge, and it is extremely solvated, that is, hydrogen bonded to an (H2O)n cluster. The binding energies and entropies are larger in the n = 7 and 8 clusters, suggesting cyclic or cage-like water structures. The concentration of the n = 3 cluster is always small, suggesting that deprotonation depletes this ion, consistent with the thermochemistry since associative deprotonation Bz(.+)(H2O)(n-1) + H2O-->C6H5. + (H2O)nH+ is thermoneutral or exothermic for n > or = 4. Associative intracluster proton transfer Bz(.+)(H2O)(n+1) + H2O-->C6H5.(H2O)nH+ would also be exothermic for n > or = 4, but lack of H/D exchange with D2O shows that the proton remains on C6H6(.+) in the observed Bz(.+)(H2O)n clusters. This suggests a barrier to intracluster proton transfer, and as a result, the [Bz(.+)(H2O)n]* activated complexes either undergo dissociative proton transfer, resulting in deprotonation and generation of (H2O)nH+, or become stabilized. The rate constant for the deprotonation reaction shows a uniquely large negative temperature coefficient of K = cT(-67+/-4) (or activation energy of -34+/- 1 kcal mol-1), caused by a multibody mechanism in which five or more components need to be assembled for the reaction.  相似文献   

13.
Molecular cluster ions H(+)(H(2)O)(n), H(+)(pyridine)(H(2)O)(n), H(+)(pyridine)(2)(H(2)O)(n), and H(+)(NH(3))(pyridine)(H(2)O)(n) (n = 16-27) and their reactions with ammonia have been studied experimentally using a quadrupole-time-of-flight mass spectrometer. Abundance spectra, evaporation spectra, and reaction branching ratios display magic numbers for H(+)(NH(3))(pyridine)(H(2)O)(n) and H(+)(NH(3))(pyridine)(2)(H(2)O)(n) at n = 18, 20, and 27. The reactions between H(+)(pyridine)(m)(H(2)O)(n) and ammonia all seem to involve intracluster proton transfer to ammonia, thus giving clusters of high stability as evident from the loss of several water molecules from the reacting cluster. The pattern of the observed magic numbers suggest that H(+)(NH(3))(pyridine)(H(2)O)(n) have structures consisting of a NH(4)(+)(H(2)O)(n) core with the pyridine molecule hydrogen-bonded to the surface of the core. This is consistent with the results of high-level ab initio calculations of small protonated pyridine/ammonia/water clusters.  相似文献   

14.
Ionic dissociation of chlorosulfonic acid (HSO3Cl) in the molecular clusters HSO3Cl-(H2O)n (n = 1-4) and HSO3Cl-NH3-(H2O)n (n = 0-3) was investigated by density functional theory and ab initio molecular orbital theory. The equilibrium structures, binding energies, and thermodynamic properties, such as relative enthalpy and relative Gibbs free energy, and were calculated using the hybrid density func- tional (B3LYP) method and the second order M?ller-Plesset approximation (MP2) method with the 6-311 G** basis set. Chlorosulfonic acid was found to require a minimum of three water molecules for ionization to occur and at least one water molecule to protonate ammonia. The corresponding clusters with fewer water molecules were found to be strongly hydrogen-bonded. The related properties and acid strength of chlorosulfonic acid were discussed and compared to the acid strengths of perchloric acid and sulfuric acid in the context of clusters with ammonia and water. The relative stabilities of these clusters were also investigated.  相似文献   

15.
Ab initio and Density Functional Theory (DFT) calculations have been carried out for zinc-water clusters Zn(n)-(H2O)(m) (n = 1-32 and m = 1-3, where n and m are the numbers of zinc atoms and water molecules, respectively) to elucidate the structure and electronic states of the clusters and the interaction of zinc cluster with water molecules. The binding energies of H2O to zinc clusters were small at n = 2-3 (2.3-4.2 kcal mol(-1)), whereas the energy increased significantly in n = 4 (9.0 kcal mol(-1)). Also, the binding nature of H2O was changed at n = 4. The cluster size dependency of the binding energy of H2O accorded well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in surface regions of the zinc cluster have a positive charge, whereas those in the interior region have a negative charge with the large electron population in the 4p orbital. The interaction of H2O with the zinc clusters were discussed on the basis of the theoretical results.  相似文献   

16.
Pure, neutral formic acid (HCOOH)n+1 clusters and mixed (HCOOH)(H2O) clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV using a very compact, capillary discharge, soft x-ray laser. During the ionization process, neutral clusters suffer little fragmentation because almost all excess energy above the vertical ionization energy is taken away by the photoelectron, leaving only a small part of the photon energy deposited into the (HCOOH)n+1+ cluster. The vertical ionization energy minus the adiabatic ionization energy is enough excess energy in the clusters to surmount the proton transfer energy barrier and induce the reaction (HCOOH)n+1+-->(HCOOH)nH+ +HCOO making the protonated (HCOOH)nH+ series dominant in all data obtained. The distribution of pure (HCOOH)nH+ clusters is dependent on experimental conditions. Under certain conditions, a magic number is found at n=5. Metastable dissociation rate constants of (HCOOH)nH+ are measured in the range (0.1-0.8)x10(4) s(-1) for cluster sizes 4相似文献   

17.
The gas phase reaction of Ni plasma and methanol clusters is studied by the laser ablation-molecular beam(LAMB) method. Five species of clustered complex ions Ni+(CH3OH)n,NiO+(CH3OH)n,H+(CH3OH)n,H3O+(CH3OH)n,CH3O-(CH3OH)n(n≤25)are observed. Interestingly,the species and sizes of the product clusters vary observably when the plasma acts on the different parts of the pulsed methanol molecular beam. When the laser ablated Ni plasma acts on the head and tail of the beam,the metal methanol complex clusters Ni+(CH3OH)n and the oxidation clusters NiO+(CH3OH)n(n=1-15)together with protonated methanol clusters H +(CH3OH)n are domain. While the plasma acts on the middle of the beam,however,Ni+(CH3OH)1-2 and H+(CH3OH)n along with the mixed methanol-water clusters H3O+(CH3OH)n(n=15-25)turn to be the main resulting clusters. By comparing the intensities and the cluster sizes of NiO+(CH3OH)n with Ni+(CH3OH)n,the formation of NiO+(CH3OH)n is contributed to the intracluster demethanation reaction of Ni+(CH3OH)n and evaporation of several methanol molecules. As the H3O+(CH3OH)n is observed only when the plasma acts on the high density part of the beam,and their intensities are only 0. 5% of the protonated methanol molecule,it is concluded that the species are partially due to the recombination of H+(CH3OH)n and water,which come from the plasma-molecule reaction.  相似文献   

18.
Clusters of Cu (2+)(H 2O) n , n = 6-12, formed by electrospray ionization, are investigated using infrared photodissociation spectroscopy, blackbody infrared radiative dissociation (BIRD), and density functional theory of select clusters. At 298 K, the BIRD rate constants increase with increasing cluster size for n >or= 8, but the trend reverses for the smaller clusters where Cu (2+)(H 2O) 6 is less stable than Cu (2+)(H 2O) 8. This trend in stability is consistent with a change in fragmentation pathway from loss of a water molecule for clusters with n >or= 9 to loss of hydrated protonated water clusters and the formation of the corresponding singly charged hydrated metal hydroxide for n 相似文献   

19.
In this work, we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum-ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH(+) (n = 1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H(+) (n = 2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH(+), (CH3OH)2(+), (CH3OH)nH(+) (n = 1-9), and (CH3OH)n(H2O)H(+) (n = 2-9) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for the methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations.  相似文献   

20.
The CO + NO reaction (2CO + 2NO --> N(2) + 2CO(2)) on small size-selected palladium clusters supported on thin MgO(100) films reveals distinct size effects in the size range Pd(n) with n < or = 30. Clusters up to the tetramer are inert, while larger clusters form CO(2) at around 300 K, and this main reaction mechanism involves adsorbed CO and an adsorbed oxygen atom, a reaction product from the dissociation of NO. In addition, clusters consisting of 20-30 atoms reveal a low-temperature mechanism observed at temperatures below 150 K; the corresponding reaction mechanism can be described as a direct reaction of CO with molecularly adsorbed NO. Interestingly, for all reactive cluster sizes, the reaction temperature of the main mechanism is at least 150 K lower than those for palladium single crystals and larger particles. This indicates that the energetics of the reaction on clusters are distinctly different from those on bulklike systems. In the presented one-cycle experiments, the reaction is inhibited when strongly adsorbed NO blocks the CO adsorption sites. In addition, the obtained results reveal the interaction of NO with the clusters to show differences as a function of size; on larger clusters, both molecularly bonded and dissociated NO coexist, while on small clusters, NO is efficiently dissociated, and hardly any molecularly bonded NO is detected. The desorption of N(2) occurs on the reactive clusters between 300 and 500 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号