首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and straightforward method for discovery and quantification of proteins adsorbed onto delicate and sensitive membrane surfaces is presented. The adsorbed proteins were enzymatically cleaved while still adsorbed onto the membranes using an on-surface enzymatic digestion (oSED). This was followed by isobaric tagging, nanoliquid chromatography, and tandem mass spectrometry. Protein adsorption on tri-block copolymer Poloxamer 407 surface-modified microdialysis (MD) membranes were compared with protein adsorption on unmodified MD membranes. Ventricular cerebrospinal fluid (vCSF) kept at 37 °C was used as sample matrix. In total, 19 proteins were quantified in two biological replicates. The surface-modified membranes adsorbed 33% less proteins than control membranes and the most abundant proteins were subunits of hemoglobin and clusterin. The adsorption of clusterin on the modified membranes was on average 36% compared to control membranes. The most common protein in vCSF, Albumin, was not identified adsorbed to the surface at all. It was also experimentally verified that oSED, in conjunction with tandem mass spectrometry can be used to quantify femtomole amounts of proteins adsorbed on limited and delicate surfaces, such as MD membranes. The method has great potential and can be used to study much more complex protein adsorption systems than previously reported.  相似文献   

2.
A partially purified phophotriesterase was successfully immobilized onto nylon 6 and 66 membranes, nylon 11 powder, and nylon tubing. Up to 9000 U of enzyme activity was immobilized onto 2000 cm2 of a nylon 6 membrane where 1 U is the amount of enzyme necessary to catalyze the hydrolysis of 1.0 mumol of paraoxon/min at 25 degrees C. The nylon 66 membrane-bound phosphotriesterase was characterized kinetically where the apparent Km value for the immobilized enzyme was 0.35 mM. This is 5-6 times higher than that observed for the soluble enzyme. However, nylon immobilization limited the maximum rate of paraoxon hydrolysis to less than 10% of the value measured for the soluble enzyme. The addition of the cosolvent, methanol, resulted in an increase in the apparent Km value for paraoxon hydrolysis but concentrations up to 40% had no negative effect on the catalytic effectiveness with the soluble or immobilized phosphotriesterase. Based on the kinetic analysis, methanol appears to be a competitive inhibitor for both forms of enzyme. The nylon powder immobilized enzyme was shown to be stable for at least 20 mo. The immobilization of the phosphotriesterase onto nylon provides a practical method for the detoxification of organophosphate pesticides.  相似文献   

3.
An enzyme-immobilized capillary microreactor for rapid protein digestion and proteomics analysis is reported. The inner surface of the fused-silica capillary was coated with poly(diallyldimethylammonium chloride) (PDDA)-entrapped silica sol-gel matrix, followed by assembly of trypsin onto the PDDA-modified surface via electrostatic adsorption. The immobilization parameters such as PDDA content in the sol-gel matrix, trypsin concentration and pH were investigated in detail. Protein samples including beta-casein, myoglobin and cytochrome c could be effectively digested and electrophoretically separated simultaneously in such a modified capillary. Just 2.26 ng (corresponding to 0.10-0.14 picomole) of sample was sufficient for on-line capillary electrophoresis peptide mapping. The efficiency of the digestion was further demonstrated by digestion of a human liver cytoplasm sample and 253 proteins were identified in one unique run.  相似文献   

4.
The susceptibility of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to the presence of salts in a sample, especially salts of alkali metals, requires careful and often tedious desalting procedures which complicate and slow the throughput of MS-based methods. A novel approach to sample preparation was developed based on the extraction of DNA out of solution onto a solid surface with an attached DNA-binding polymer, such as polyethyleneimine or polyvinylpyrrolidone. The observed binding is strong enough to sustain washing, and, as a result, desalting and concentration can be performed in a single fast step. After DNA has been immobilized on the surface and supernatant solution removed, subsequent addition of MALDI matrix releases material from the surface, which co-crystallizes with matrix. The mass spectrometric analysis is then performed directly from this support. Analysis of oligonucleotides and three-fold multiplexed SNP typing reactions performed by this method shows improved sensitivity and excellent resolution for various DNA fragments, together with high tolerance to various buffer components, such as alkali metals and surfactants. Simplicity and speed make it attractive for high-throughput sample preparation and analysis of oligonucleotide mixtures by MALDI-MS.  相似文献   

5.
Methods are described for the purification of proteins prior to analysis by matrix-assisted laser-desorption mass spectrometry. Contaminated protein samples were immobilized onto the surfaces of sample targets and rinsed. In general, a layer of electrosprayed nitrocellulose gave better results than the roughened gold surface of an untreated target. Using this approach, spectra could be obtained from low picomole quantities of protein in the presence of contaminants which did not inhibit the binding of the protein to the substrate.  相似文献   

6.
A new methodology for efficient protein (e.g., antibodies, enzymes, etc.) immobilization on microporous nylon membranes for use in a variety of bioanalytical systems is introduced. The method utilizes an activated self-assembled monolayer (SAM) of thioctic acid on gold coated forms of the membranes. Via a carbodiimide mediated reaction, the protein is anchored to the gold surface through an amide bond with the terminal carboxyl group of the adsorbed thioctic acid. The immobilization efficiency is high (95% for a monoclonal immunoglobulin G(IgG) and the surface bound protein appears to be stable enough to resist any displacement by other proteins in a matrix as complex as serum. Immunological activity of immobilized antibody is retained as demonstrated via use of such membrances in colorimetric ELISA for human chorionic gonadatropin (hCG). The high protein immobilization efficiency, the high tensile strength of microporous nylon membranes, and the excellent electrochemical characteristics of gold make this approach very attractive for preparing biomembranes that should be useful in affinity chromatography, electrochemical immunosensing systems, flow-through enzyme reactors, etc.  相似文献   

7.
Electrospray interfacing of polymer microfluidics to MALDI-MS   总被引:1,自引:0,他引:1  
The off-line coupling of polymer microfluidics to MALDI-MS is presented using electrospray deposition. Using polycarbonate microfluidic chips with integrated hydrophobic membrane electrospray tips, peptides and proteins are deposited onto a stainless steel target followed by MALDI-MS analysis. Microchip electrospray deposition is found to yield excellent spatial control and homogeneity of deposited peptide spots, and significantly improved MALDI-MS spectral reproducibility compared to traditional target preparation methods. A detection limit of 3.5 fmol is demonstrated for angiotensin. Furthermore, multiple electrospray tips on a single chip provide the ability to simultaneously elute parallel sample streams onto a MALDI target for high-throughput multiplexed analysis. Using a three-element electrospray tip array with 150 microm spacing, the simultaneous deposition of bradykinin, fibrinopeptide, and angiotensin is achieved with no cross talk between deposited samples. In addition, in-line proteolytic digestion of intact proteins is successfully achieved during the electrospray process by binding trypsin within the electrospray membrane, eliminating the need for on-probe digestion prior to MALDI-MS. The technology offers promise for a range of microfluidic platforms designed for high-throughput multiplexed proteomic analyses in which simultaneous on-chip separations require an effective interface to MS.  相似文献   

8.
The identification of peroxisomal membrane proteins is very important to understand the import mechanisms of substrates and proteins into these organelles and the pathogenesis of human peroxisomal disorders like the Zellweger Syndrom. Peroxisomal membrane proteins were identified after separation by gel electrophoresis, tryptic digestion and mass spectrometric analysis. Using matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and nanoliquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), it was possible to identify 45 proteins of isolated yeast peroxisomal membranes.  相似文献   

9.
While surfactants are commonly used in preparing protein samples, their presence in a protein sample can potentially affect the enzymatic digestion process and the subsequent analysis of the resulting peptides by mass spectrometry. The extent of the tolerance of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to surfactant interference in peptide analysis is very much dependent on the matrix/sample preparation method. In this work the effects of four commonly used surfactants, namely n-octyl glucoside (OG), Triton X-100 (TX-100), 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and sodium dodecyl sulfate (SDS), for biological sample preparation on trypsin digestion and MALDI-MS of the resulting digest are examined in detail within the context of using a two-layer method for MALDI matrix/sample preparation. Non-ionic and mild surfactants, such as OG, TX-100 or CHAPS, are found to have no significant effect on trypsin digestion with surfactant concentrations up to 1%. However, TX-100 and CHAPS interfere with the subsequent peptide analysis by MALDI-MS and should be removed prior to peptide analysis. OG is an MS-friendly surfactant and no effect is observed for MALDI peptide analysis. The effect of SDS on trypsin digestion in terms of the number of peptides generated and the overall protein sequence coverage by these peptides is found to be protein dependent. The use of SDS to solubilize hydrophobic membrane proteins, followed by trypsin digestion in the presence of 0.1% SDS, results in a peptide mixture that can be analyzed directly by MALDI-MS. These peptides are shown to provide better sequence coverage compared with those obtained without the use of SDS in the case of bacteriorhodopsin, a very hydrophobic transmembrane protein. This work illustrates that MALDI-MS with the two-layer sample preparation method can be used for direct analysis of protein digests with no or minimum sample cleanup after proteins are digested in a solution containing surfactants.  相似文献   

10.
Xu G  Chen X  Hu J  Yang P  Yang D  Wei L 《The Analyst》2012,137(12):2757-2761
With an ultra-high surface area and abundant functional groups, graphene oxide (GO) provides an ideal substrate for the immobilization of trypsin. We demonstrated that trypsin could be immobilized on GO sheets assisted by polymers as molecular spacers to maintain the activity of the enzyme. And with the trypsin-linked GO as the enzyme immobilization probe, a novel microwave-assisted on-plate digestion method has been developed with subsequent analysis by MALDI-MS. The feasibility and performance of the digestion approach were demonstrated by the proteolysis of standard proteins. The results show that this novel approach substantially accelerated proteolysis and reduced the time required for traditional procedures involving on-plate enzymatic digestion and sample preparation prior to MALDI-MS analysis. The novel digestion approach is simple and efficient, offering great promise for high throughput protein identification.  相似文献   

11.
Characterization of membrane proteins remains an analytical challenge because of difficulties associated with tedious isolation and purification. This study presents the utility of the polyvinylidene difluoride (PVDF) membrane for direct sub-proteome profiling and membrane protein characterization by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The hydrophobic adsorption of protein, particularly membrane proteins, on the PVDF surface enables efficient on-PVDF washing to remove high concentrations of detergents and salts, such as up to 5% sodium dodecyl sulfate (SDS). The enhanced spectrum quality for MALDI detection is particularly notable for high molecular weight proteins. By using on-PVDF washing prior to MALDI detection, we obtained protein profiles of the detergent-containing and detergent-insoluble membrane fractions from Methylococcus capsulatus (Bath). Similar improvements of signal-to-noise ratios were shown on the MALDI spectra for proteins electroblotted from SDS-polyacrylamide gel electrophoresis (SDS-PAGE) onto the PVDF membrane. We have applied this strategy to obtain intact molecular weights of the particulate methane monooxygenase (pMMO) composed of three intrinsic membrane-bound proteins, PmoA, PmoB, and PmoC. Together with peptide sequencing by tandem mass spectrometry, post-translational modifications including N-terminal acetylation of PmoA and PmoC and alternative C-terminal truncation of PmoB were identified. The above results show that PVDF-aided MALDI-MS can be an effective approach for profiling and characterization of membrane proteins.  相似文献   

12.
To study the interaction between liposomes and proteins, intact liposomes were immobilized on a metal planar support by chemical binding and/or bioaffinity using a quartz crystal microbalance (QCM). A large decrease in the resonance frequency of quartz crystal was observed when the QCM, modified by a self-assembled monolayer (SAM) of carboxythiol, was added to liposome solutions. The stable chemical immobilization of intact liposomes onto SAM was judged according to the degree with which adsorbed mass depended on the prepared size of liposomes, as well as on the activation time of SAMs when amino-coupling was introduced, where the liposome coverage of electrodes was 69+/-8% in optimal conditions. When avidin-biotin binding was used on amino-coupling liposome layers, liposome immobilization finally reached 168% coverage of the electrode surface. Denatured protein was also successfully detected according to the change in the frequency of the liposome-immobilized QCM. The adsorbed mass of denatured carbonic anhydrase from bovine onto immobilized liposomes showed a characteristic peak at a concentration of guanidine hydrochloride that corresponded to a molten globule-like state of the protein, although the mass adsorbed onto deactivated SAM increased monotonously.  相似文献   

13.
A method with carbon nanotubes functioning both as the adsorbent of solid-phase extraction (SPE) and the matrix for matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) to analyze small molecules in solution has been developed. In this method, 10 microL suspensions of carbon nanotubes in 50% (vol/vol) methanol were added to the sample solution to extract analytes onto surface of carbon nanotubes because of their dramatic hydrophobicity. Carbon nanotubes in solution are deposited onto the bottom of tube with centrifugation. After removing the supernatant fluid, carbon nanotubes are suspended again with dispersant and pipetted directly onto the sample target of the MALDI-MS to perform a mass spectrometric analysis. It was demonstrated by analysis of a variety of small molecules that the resolution of peaks and the efficiency of desorption/ionization on the carbon nanotubes are better than those on the activated carbon. It is found that with the addition of glycerol and sucrose to the dispersant, the intensity, the ratio of signal to noise (S/N), and the resolution of peaks for analytes by mass spectrometry increased greatly. Compared with the previously reported method by depositing sample solution onto thin layer of carbon nanotubes, it is observed that the detection limit for analytes can be enhanced about 10 to 100 times due to solid-phase extraction of analytes in solution by carbon nanotubes. An acceptable result of simultaneously quantitative analysis of three analytes in solution has been achieved. The application in determining drugs spiked into urine has also been realized.  相似文献   

14.
Guo Z  Xu S  Lei Z  Zou H  Guo B 《Electrophoresis》2003,24(21):3633-3639
Peptide mass mapping analysis, utilizing a regenerable enzyme microreactor with metal-ion chelated adsorption of enzyme, combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was developed. Different procedures from the conventional approaches were adopted to immobilize the chelator onto the silica supports, that is, the metal chelating agent of iminodiacetic acid (IDA) was reacted with glycidoxypropyltrimethoxysilane (GLYMO) before its immobilization onto the inner wall of the fused-silica capillary pretreated with NH(4)HF(2). The metal ion of copper and subsequently enzyme was specifically adsorbed onto the surface to form the immobilized enzyme capillary microreactor, which was combined with MALDI-TOF-MS to apply for the mass mapping analysis of nL amounts of protein samples. The results revealed that the peptide mapping could routinely be generated from 0.5 pmol protein sample in 15 min at 50 degrees C, even 20 fmol cytochrome c could be well digested and detected.  相似文献   

15.
A droplet (digital) microfluidic device has been developed that enables complete protein sample preparation for MALDI-MS analysis. Protein solution dispensing, disulfide bond reduction and alkylation, tryptic digestion, sample crystallization, and mass spectrometric analysis are all performed on a single device without the need for any ex situ sample purification. Fluorinated solvents are used as an alternative to surfactants to facilitate droplet movement and limit protein adsorption onto the device surface. The fluorinated solvent is removed by evaporation and so does not interfere with the MALDI-MS analysis. Adding a small amount of perfluorooctanoic acid to the MALDI matrix solution improves the yield, quality and consistency of the protein-matrix co-crystals, reducing the need for extensive 'sweet spot' searching and improving the spectral signal-to-noise ratio. These innovations are demonstrated in the complete processing and MALDI-MS analysis of lysozyme and cytochrome c. Because all of the sample processing steps and analysis can be performed on a single digital microfluidic device without the need for ex situ sample handling, higher throughput can be obtained in proteomics applications. More generally, the results presented here suggest that fluorinated liquids could also be used to minimize protein adsorption and improve crystallization in other types of lab-on-a-chip devices and applications.  相似文献   

16.
Two-dimensional electrophoretic separation and immobilization of proteins onto inert membranes for subsequent amino acid sequence and amino acid composition analysis is described as a rapid procedure for the identification or characterization of proteins from complex mixtures. This method avoids the drawbacks of classical purification and isolation methods which involve time-consuming operations with low resolution and, often, insufficient yields. Excellent overall yields of minor amounts (in the low microgram range) using this method allow for sequence determination of yet inaccessible proteins. Solubilized cell proteins of mouse brain were separated by high resolution two-dimensional electrophoresis and electroblotted onto a siliconized glass fiber membrane. The immobilized proteins were stained with Coomassie Brilliant Blue R-250, and twelve proteins spots were then submitted to both Edman degradation and amino acid analysis. Proteins were identified by comparison of the experimentally determined amino acid composition with a dataset derived from the Protein Identification Resource (PIR) protein sequence database. Eight out of twelve proteins tested were identified by amino acid analysis and confirmed by N-terminal sequence determination.  相似文献   

17.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF MS) analysis of proteins in salt-containing solution was performed for the first time using porous anodic alumina (PAA) membrane as sample support. The resulting spectral quality of proteins under standard sample preparation conditions was superior to that of normal metal sample stages. Analysis of phosphate-doped protein solutions indicated that porous anodic alumina membranes as a target yielded better results than a metallic target for salt-containing solutions. Because of the biocompatibility of the PAA, proteins can be adsorbed on the PAA and thus a washing process can be introduced to remove the salts from the PAA target before MS analysis. This desalting step significantly enhanced spectral quality, and better signal-to-noise ratios were obtained. The present technique is promising for proteomics research.  相似文献   

18.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the most widely used techniques in proteomics to achieve structural identification and characterization of proteins and peptides, including their variety of proteoforms due to post-translational modifications (PTMs) or protein–protein interactions (PPIs). MALDI-MS and MALDI tandem mass spectrometry (MS/MS) have been developed as analytical techniques to study small and large molecules, offering picomole to femtomole sensitivity and enabling the direct analysis of biological samples, such as biofluids, solid tissues, tissue/cell homogenates, and cell culture lysates, with a minimized procedure of sample preparation. In the last decades, structural identification of peptides and proteins achieved by MALDI-MS/MS helped researchers and clinicians to decipher molecular function, biological process, cellular component, and related pathways of the gene products as well as their involvement in pathogenesis of diseases. In this review, we highlight the applications of MALDI ionization source and tandem approaches for MS for analyzing biomedical relevant peptides and proteins. Furthermore, one of the most relevant applications of MALDI-MS/MS is to provide “molecular pictures”, which offer in situ information about molecular weight proteins without labeling of potential targets. Histology-directed MALDI-mass spectrometry imaging (MSI) uses MALDI-ToF/ToF or other MALDI tandem mass spectrometers for accurate sequence analysis of peptide biomarkers and biological active compounds directly in tissues, to assure complementary and essential spatial data compared with those obtained by LC-ESI-MS/MS technique.  相似文献   

19.
In toxicological analysis, the analytical validation method is important to assess the exact risk of contaminants of emerging concern in the environment. Syringe filters are mainly used to remove impurities from sample solutions. However, the loss of analyte to the syringe filter could be considerable, causing an underestimate of the analyte concentrations. The current study develops and validates simultaneous liquid chromatography-mass spectrometry analysis using a direct filtration method to detect four groups of contaminants of emerging concern. The adsorption of the analyte onto three different matrices and six types of syringe filters is reported. The lowest adsorption of analytes was observed in methanol (16.72%), followed by deionized water (48.19%) and filtered surface lake water (48.94%). Irrespective of the type of the matrices, the lowest average adsorption by the syringe filter was observed in the 0.45 μm polypropylene membrane (15.15%), followed by the 0.20 μm polypropylene membrane (16.10%), the 0.20 μm regenerated cellulose (16.15%), the 0.20 μm polytetrafluoroethylene membrane (47.38%), the 0.45 μm nylon membrane (64.87%) and the 0.20 μm nylon membrane (71.30%). In conclusion, the recommended syringe filter membranes for contaminants of emerging concern analysis are polypropylene membranes and regenerated cellulose, regardless of the matrix used.  相似文献   

20.
A method for quantitating proteins and peptides in the low picomole and sub-picomole range has been developed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) with internal (18)O-labeled standards. A simple procedure is proposed to produce such internal standards for the tested sample by enzymatic hydrolysis of the same sample (with known concentration) in (18)O-water. A mathematical algorithm was developed which uses the isotopic patterns of the substance, the internal standard, and the substance/internal standard mixture for accurate quantitation of the substance. A great advantages of the proposed method is the absence of molecular weight limitation for the protein quantitation and the possibility of quantitation without previous fractionation of proteins and peptides. Using this strategy, the peptide angiotensinogen and two proteins, RNase and its protein inhibitor, were quantified by MALDI-time-of-flight (TOF) mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号