首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The micro-electrospray ionization source has been optimized for the specific analysis of neuropeptides such as neurotensin and methionine enkephalin. The source has the option of integrating nanoliter flow-rate desalting and preconcentration techniques into the micro-electrospray spray needle, eliminating post-column dead volumes. For neurotensin, the most sensitive neuropeptide analyzed thus far in this work, the injection of 10 μL of a solution containing 320 zeptomolesy/gmL gave an [M + 3H]+3 ion at m/z 558.4 with S/N of > 8∶1. The MS/MS analysis of this peptide for the fragment ion at m/z 578.9 gave a S/N > 20∶1 for a solution containing 32 attomoles/μL.  相似文献   

2.
We report the fabrication of a durable nonmetallized nanospray tip. This nanospray tip does not require complex preparation procedures such as chemical treatment, deposition of gold or SiOx vapor. It was fabricated by pulling a heated glass capillary of 1.1 mm internal diameter to produce a fine tip with an orifice of 10–15 μm in diameter. A 10 μm gold-plated tungsten wire was inserted through the capillary tip. This tungsten wire played a central role in the operation of this durable nanospray tip by providing electrical contact. This type of nanospray tip could withstand electrical discharges and sustained spraying of solution at nanoliter flow rate for more than 3 h. Using insulin (35 μM) and myoglobin (1 μM) solutions, useful mass spectrum could be acquired with low fmol sensitivity.  相似文献   

3.
A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10?9 torr. The increased pumping speed attainable with cryopumping (> 105 L/s) allowed brief pressure excursions to above 10?4 torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10–25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4+ charge state (m/z 1434) of insulin.  相似文献   

4.
This work proposes an approach to the direct analysis of S‐adenosylhomocysteine (SAH) and the methylation index in blood using CE with UV detection (CE‐UV). After application of meglumine postinjection, we achieved SAH in‐capillary preconcentration in the HClO4 extracts of erythrocytes, which improved the detection limit (S/N = 3) of SAH up to 3 fmol or 180 nmol/L at the injection volume of 50 nL, taking into account the sample dilution rate. CE‐UV was carried out in 30 mM glycine and 45 mmol/L HCl (pH ~1.8) at 17 kV in a capillary 48 cm in length and 50 μm id. Accuracy of the technique was 101% and reproducibility was about 12%.  相似文献   

5.
An atmospheric pressure laser desorption/ionization mass spectrometry imaging ion source has been developed that combines high spatial resolution and high mass resolution for the in situ analysis of biological tissue. The system is based on an infrared laser system working at 2.94 to 3.10 μm wavelength, employing a Nd:YAG laser-pumped optical parametrical oscillator. A Raman-shifted Nd:YAG laser system was also tested as an alternative irradiation source. A dedicated optical setup was used to focus the laser beam, coaxially with the ion optical axis and normal to the sample surface, to a spot size of 30 μm in diameter. No additional matrix was needed for laser desorption/ionization. A cooling stage was developed to reduce evaporation of physiological cell water. Ions were formed under atmospheric pressure and transferred by an extended heated capillary into the atmospheric pressure inlet of an orbital trapping mass spectrometer. Various phospholipid compounds were detected, identified, and imaged at a pixel resolution of up to 25 μm from mouse brain tissue sections. Mass accuracies of better than 2 ppm and a mass resolution of 30,000 at m/z?=?400 were achieved for these measurements.
Figure
Infrared laser desorption/ionization mass spectrometry imaging provides for direct analysis of biological tissue with a high spatial resolution of 25 μm  相似文献   

6.
A method for the rapid proteolytic digestion of low picomole to low femtomole amounts of proteins in solution using a capillary immobilized protease column is presented. Dilute protein samples are passed through a “μ-digestion” column packed with Poroszyme? immobilized trypsin for generation of proteolytic fragments in less than 10 min. After digestion, nanoelectrospray ionization mass spectrometry (NanoES) is used to generate a peptide map, and peptides of interest are subjected to MS/MS from the same sample. By digesting only 100 fmol of the protein src kinase and 30 fmol of the protein lck kinase with a tryptic μ-digestion column, we obtained sufficient data from NanoES-MS and MS/MS to unambiguously identify both proteins using database searching. This approach was also used to locate a phosphorylation site on lck kinase starting with only 300 fmol of protein. The method was successfully used to identify an E. coli cold shock protein in a fraction collected from a two-dimensional HPLC separation of an E. coli cell lysate. The μ-digestion column was found to be less susceptible to adsorptive losses than solution digests, thus allowing for digestion and enhanced recovery of peptides from even low fmol amounts of protein in solution.  相似文献   

7.
An analytical assay has been developed and validated for ultrafast and high-throughput mass spectrometric determination of pemetrexed concentrations in plasma using matrix assisted laser desorption/ionization–triple quadrupole–tandem mass spectrometry. Patient plasma samples spiked with the internal standard methotrexate were measured by multiple reaction monitoring. The detection limit was 0.4 fmol/μL, lower limit of quantification was 0.9 fmol/μL, and upper limit of quantification was 60 fmol/μL, respectively. Overall observed pemetrexed concentrations in patient samples ranged between 8.7 (1.4) and 142.7 (20.3)?pmol/μL (SD). The newly developed mass spectrometric assay is applicable for (routine) therapeutic drug monitoring of pemetrexed concentrations in plasma from non-small cell lung cancer patients.  相似文献   

8.
Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ~30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.
Figure
?  相似文献   

9.
The efficiencies of two narrow bore columns (100 mm and 50 mm × 2.1 mm) packed with 1.7 μm totally porous BEH-C18 particles were measured on two very high pressure liquid chromatographs (Acquity from Waters and 1290 Infinity HPLC System from Agilent) operating at maximum pressures of 1034 and 1200 bar, respectively. The probe compounds were a mixture of uracil, acetophenone, toluene, and naphthalene eluted in a 50/50 (v/v) solution of acetonitrile and water at 303 K with a flow rate of 0.40 mL/min. The apparent efficiencies of columns, which lumps the consequences of band broadening due to the column and the system contributions, may depend much on the extra-column volumes of the instruments used. Actually, it is known for a long time that the apparent column performance is strongly affected by the instrument characteristics, including the diameter of the connecting tubes, the injection technique (with or without needle seat capillary), and the detection cell volume. When the 1290 Infinity HPLC System is equipped with a needle seat, an inlet and an outlet connecting capillary tube with inner diameters around 115 μm, its extra-column variance for a 0.1 μL injection volume is 9.2 μL2 while that of the Acquity instrument is 6.9 μL2. Minor modifications suggested by their respective manufacturers allowed significant reductions of these variances, to 6.2 and 3.9 μL2, respectively. Yet, in their optimized configurations and for weakly retained compounds (k ? 1), these modern, sophisticated instruments cannot provide more than 75% (1290 Infinity) and 85% (Acquity) of the maximum efficiency of a 2.1 mm × 50 mm BEH column. For more strongly retained compounds (k > 4), in contrast, they are both able to provide more than 95% of the maximum expected efficiency.  相似文献   

10.
A capillary chromatography system was developed using an open capillary tube and a ternary solvents carrier solution of water-hydrophilic/hydrophobic organic solvent mixture. The chromatography is called a tube radial distribution chromatography (TRDC) system. The TRDC system works without applying high voltages or using specific columns, such as monolithic and packed columns. In this study, the effects of tube materials on separation performance were examined in the TRDC system, by using poly(tetrafluoroethylene) (PTFE; 100–400?μm inner diameter), polyethylene (PE; 200?μm inner diameter), and copolymer of (tetrafluoroethylene–perfluoroalcoxyethylene) (PTFE–PFAE; 100?μm inner diameter) capillary tubes. An analyte solution of 2,6-naphthalenedisulfonic acid and 1-naphthol as a model was subjected to the system with a water–acetonitrile–ethyl acetate carrier solution; 15:3:2 volume ratio (water-rich carrier) and 3:8:4 volume ratio (organic solvent-rich carrier). The flow rates were adjusted to be 0.5?μL?min?1 for PTFE and PTFE–PFAE tubes as well as 2.0?μL?min?1 for PE tube under laminar flow conditions. These analytes in the solution were separated in this order with the water-rich carrier solution with baseline separation in the three capillary tubes, while they were eluted in the reverse order or not separated with the organic solvent-rich carrier solution. The effects of tube temperature on separation were also examined with the water-rich carrier solution; the best resolutions were observed at 0?°C of the tube temperature. The obtained results were compared with those of fused-silica capillary tube and discussed.  相似文献   

11.
In this study, C18-silica monoliths were synthesized as a porous layer in open tubular capillary columns, to be cut later into microcartridges for the analysis of neuropeptides by on-line solid-phase extraction capillary electrophoresis with UV and MS detection (SPE-CE-UV and SPE-CE-MS). First, several types of C18-silica monolithic (MtC18) microcartridges were used to analyse standard solutions of five neuropeptides (i.e. dynorphin A (1–7), substance P (7–11), endomorphin 1, methionine enkephalin and [Ala]-methionine enkephalin). The MtC18 sorbents were especially selective against endomorphin 1 and substance P (7–11)). The best results in terms of sensitivity and inter-microcartridge reproducibility were achieved with the microcartridges obtained from a 10-cm open tubular capillary column with a thin monolithic coating with large through-pores (1–5 μm). Run-to-run repeatability, microcartridge durability, linearity ranges and LODs were studied by MtC18-SPE-CE-MS. As expected due to their greater selectivity, the best LOD enhancement was obtained for End1 and SP (7–11) (50 times with regard to CE-MS). Finally, the suitability of the methodology for analysing biological fluids was tested with plasma samples spiked with End1 and SP (7–11). Results obtained were promising because both neuropeptides could be detected at 0.05 μg mL−1, which was almost the same concentration level as for the standard solutions (0.01 μg mL−1).  相似文献   

12.
This paper describes a cost-effective procedure for the analysis of short-chain aliphatic amines in water samples using a solid-phase microextraction device. Analyte preconcentration and derivatisation were effected into a capillary column coated with 95% polydimethylsiloxane–5% polydiphenylsiloxane, which was used as the injection loop of a Rheodyne injection valve. The coating was previously loaded with the derivatisation reagent, 9-fluorenylmethyl chloroformate. A volume of 1 mL of samples was then drawn into the capillary column, and the extracted analytes were left to react on the capillary coating for 5 min. Next, the capillary column was cleaned by passing water. Finally, the injection valve was rotated, and the derivatives formed were dynamically desorbed and transferred to the analytical column into the mobile phase. Methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine were selected as model compounds. Excellent sensitivity was achieved, being the limits of detection of 15–200 μg/L when using UV detection and of 0.1–0.4 μg/L by fluorescence.  相似文献   

13.
Offline dispersive liquid‐liquid microextraction combined with online pressure‐assisted electrokinetic injection was developed to simultaneously enrich seven phenolic compounds in water samples, followed by determination using capillary electrophoresis, namely phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol. Several parameters affecting separation performance of capillary electrophoresis and the enrichment efficiency of pressure‐assisted electrokinetic injection and dispersive liquid‐liquid microextraction were systematically investigated. Under the optimal conditions, seven phenolic compounds were completely separated within 14 min and good enrichment factors were obtained of 61, 236, 3705, 3288, 920, 86, and 1807 for phenol, 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2,4‐dichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, respectively. Good linearity was attained in the range of 0.1–200 μg/L for 2,4‐dichlorophenol, 0.5–200 μg/L for 4‐chlorophenol, pentachlorophenol, 2,4,6‐trichlorophenol, 2‐chlorophenol, and 2,6‐dichlorophenol, as well as 1–200 μg/L for phenol, with correlation coefficients (r) over 0.9905. The limits of detection and quantification ranging from 0.03–0.28 and 0.07–0.94 μg/L were attained. This two step enrichment method was potentially applicable for the rapid and simultaneous determination of phenolic compounds in water samples.  相似文献   

14.
Electrospray ionization mass spectrometry was used to characterize several different neuropeptides, whose molecular weights ranged from 555 to 3463 Da, and to quantify endogenous methionine enkephalin (ME) and β -endorphin (β E) extracted from a human pituitary gland. Methionine enkephalin and leucine enkephalin both yield only an [M + H] + ion with electrospray mass spectrometry; the other peptides produce a series of multiply charged even-electron molecular ions of the general nature [M + nH]n+ in proportion to the number of basic amino acid units present, with no evidence of fragmentation. The electrospray mass spectra are characterized by low background noise. The quantiftcation of ME is based on a comliarison of the ion current due to the [M + H] + ion of native and of a deuterated ME ([2H5 s?4Phe]?ME) internal standard. The calibration curve is linear in the range of ca. 1-35 pmol synthetic ME. The amounts of ME determined in three separate human pituitary extracts were 9.1, 8.2, and 4.7 pmol/mg protein. The corresponding amount of ME in a canine pituitary was 39.8 pmol/mg protein. To quantify β E, the ion current due to the [M + 5H]5 + ion was monitored and compared to an external calibration curve obtained by analyzing solutions of synthetic β E in the range 5 μmol-50 pmol. The analysis of a human pituitary yielded 660 fmol β E/mg protein.  相似文献   

15.
The contributions of the volume of sample injected, the mobile phase flow rate, the inner diameter of the needle seat capillary and that of the connector capillary, the heat exchanger, and the detector cell volume to the widths of bands eluted from the 1290 Infinity HPLC instrument were investigated in depth. Four sample volumes (0.16, 0.80, 4.0, and 20 μL), three flow rates (0.04, 0.4, and 4.0 mL/min), two needle seat capillary I.D. (100 mm × 115 and 140 μm), three sets of connector capillary I.D. (350 mm × 80, 115, and 140 μm placed upstream the column, and 220 mm × 80, 115, and 140 μm downstream the column), two UV detector cell volumes (0.8 and 2.4 μL), and the presence/absence of the heat exchanger (1.6 μL) between the inlet connector capillary tube and the column were combined to generate up to 4 × 3 × 2 × 3 × 2 × 2=288 system configurations for this instrument. For each configuration, 5 consecutive injections were performed in order to assess the injection-to-injection repeatability, providing 1440 elution band profiles which are analyzed. The results demonstrate that the band broadening contribution of the instrument depends mostly on the detector cell volume and on the inner diameter of the needle seat capillary tube. The impact of these two contributions is particularly important at high flow rates (4 mL/min). Best efficiencies are obtained with a small sample volume, below 1 μL, which avoids volume overload of the instrument, or with large sample volumes, which maximize the radial concentration gradients of the sample across the instrument channels, in the vicinity of the anfractuosities of the channel walls. The injection of large sample volumes reveals the imperfection of current injection systems, the performance of which is remote from the one expected to provide an ideal rectangular injection (~+4 μL(2)). Although the present behavior of the instrument is satisfactory, serious improvements would become necessary to operate the next generation of more efficient columns that might be commercialized soon.  相似文献   

16.
采用毛细管电泳-柱端安培检测测定莲子心中荷叶碱、芦丁和金丝桃甙的含量.研究了检测电位、运行缓冲液浓度和pH值,分离电压和进样时间对分离和检测的影响.以微碳圆盘电极(Ф=0.5ram)为工作电极,检测电位为+0.95V(vs.Ag/AgCl),pH为7.25的50mmol/L Na2B4O7和100mmol/L NaH2PO4缓冲液为运行液,当分离电压为15kV时,3种分析物在15min内完全分离.荷叶碱、芦丁和金丝桃甙的检出限(S/N=3)分别为0.02μg/mL、0.05μg/mL和0.04μg/mL.该方法已成功地应用于莲子心中上述3种活性成分的测定.  相似文献   

17.
A new, simple, and efficient approach for on-column surface-enhanced Raman scattering (SERS) detection in capillary electrophoresis (CE) is reported. A ∼50-μm SERS substrate spot was prepared by laser-induced growth of silver particles in the 100-μm inner diameter CE capillary window or in a flow cell consisting of a 250-μm inner diameter fused silica capillary connector. For this purpose, the Raman laser was focused by a 20× objective into the detection window filled with a 0.5 mM silver nitrate and 10 mM citrate buffer solution. During the CE runs, the silver substrate spot was formed in a few seconds after the analyte injection, hence the analytes adsorbed sequentially to the silver surface when the detection window was reached, followed by desorption from the silver surface and continuing the electrophoretic migration to the capillary end. Thus, beyond migration time, valuable molecular specific information was delivered by the SERS spectra. Accurate separations and high-intensity SERS spectra are shown by CE-SERS time-dependent 3D electropherograms for the analytes rhodamine 6G, 4-(2-pyridylazo)resorcinol (PAR), PAR complex with Cu(II) and methylene blue at 0.25–25 ppm concentrations, by using 1.4–3.6 mW HeNe laser power and an acquisition time of 5 s for each spectrum. Before and after each analyte passes the detection window, clean background spectra were recorded and no memory effects perturbed the SERS detection. The silver substrate is characterized by a fast preparation rate, good reproducibility, a preparation success rate of over 95% and no mentionable influence on the electrophoretic migration time, the CE-SERS and CE-UV electropherograms being in good agreement. The successful coupling of CE and on-column SERS detection opens new perspectives for monitoring CE separations.  相似文献   

18.
建立了高效毛细管电泳法直接分离测定葡萄酒中苋菜红及壳蓝的方法。研究了缓冲体系种类、pH值、缓冲溶液浓度及有机添加剂对分离效果的影响。确定的最佳实验条件:未涂层石英毛细管柱(50cm×75μm),分离缓冲溶液10mmol/L柠檬酸-5mmol/L∥一环糊精(pH2.6),检测波长220nm,电泳电压20kv,压力进样(20kPa×3s),电泳温度为室温。该方法测定的苋菜红及亮蓝质量浓度在2-200mg/L范围内线性良好,苋菜红及亮蓝的检出限分别为0.58,0.50mg/L,线性相关系数-≥0.9994,回收率在93.9%~107.2%之间。该方法无需样品预处理,操作简便,测定准确,能满足实际样品的分析需求。  相似文献   

19.
We present a very simple electrospray unit, a capillary spray cell, for easy analysis of small (10–50 μL) sample aliquots. The sample, e.g., an unfiltered extract, is injected to a small sample cell, made of alumina and containing a short fused silica capillary mounted in its side. By the application of a 5 kV potential between the sample cell and the entrance orifice of a mass spectrometer with an atmospheric pressure interface, the sample is dragged out of the cell at a rate of a few μL/min and an electrospray is generated at the tip of the silica capillary. The capillary spray cell benefits from a high internal diameter (up to 250 μm) and very easy and inexpensive replacement of the capillary, which makes the sprayer well suited for analysis of unfiltered extracts. We demonstrate the direct analysis of extracts from plants and insects. In quantitative measurements using internal standards, a relatively high sensitivity (low ng/mL) is obtained together with good linearity (R2 = 0.998) in the range of 10–1000 ng/mL. The capillary spray cell is also suited for use with field portable mass spectrometers, since no syringe pump or nebulizer gas is needed. Furthermore, the capillary spray cell is easily manufactured by most mechanical workshops.  相似文献   

20.
Liquid–liquid microextraction using the water immiscible ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, EMIM NtfO2, for the concentration and cleanup of basic compounds for analysis by CE has been investigated. Using an electrolyte comprising 1 mol/L alanine and 3 mol/L acetic acid, EMIM NtfO2 could be directly injected into the capillary after liquid phase extraction. Using the basic dye chryisoidine, sensitivity enhancements approaching 1000-fold were obtained by mixing 20 μL of EMIM NtfO2 with 1500 μL of aqueous sample, leaving only 5 μL of the undissolved ionic liquid which was used for injection into the CE. Lower more repeatable enhancement factors of 200-fold were obtained with slightly larger initial 25 μL volumes of EMIM NtfO2 due to the larger residual volume of ionic liquid which made handling easier. This could be extended to basic pharmaceuticals, and the extraction of clozapine and its two active metabolites, nor-clozapine and clozapine-N-oxide, was demonstrated from urine with enrichment factors greater than 100 obtained. Handling of potentially more dangerous samples, such as serum, through in-vial extraction of clozapine and its metabolites and direct injection of the ionic liquid layer was also demonstrated with enhancements in sensitivity of 80. Limits of detection from 3 to 11 μg/L and 6 to 55 μg/L were obtained from urine and serum, respectively, which are sufficiently low to be useful for the determination of these pharmaceuticals clinically for therapeutic drug monitoring and for forensic toxicology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号