首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and the macrocyclic ligand, dibenzo-18-crown-6 (DB18C6), were studied in ethylacetate (EtOAc)-dimethylformamide (DMF) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all the complexes is 1:1. A non-linear behavior was observed for the variation of log K f of the complexes versus the composition of binary mixed solvents, which was discussed in terms of heteroselective solvation and solvent-solvent interactions in binary solutions. It was found that the stability order of the complexes changes with changing the composition of the mixed solvents. The sequence of stabilities for the K+, Ag+, NH4+, and Hg2+ complexes with DB18C6 in EtOAc-DMF binary solutions (mol. % DMF 25.0) and (mol. % DMF 50.0) at 25°C is (DB18C6-Ag)+ > (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-NH4)+, but in the cases of pure DMF and a binary solution of EtOAc-DMF (mol. % DMF 75.0) is (DB18C6-K)+ > (DB18C6-Hg)2+ > (DB18C6-Ag)+ ≈ (DB18C6-NH4)+. The values of thermodynamic quantities (ΔH c o, ΔS c o) for these complexation reactions have been determined from the temperature dependence of the stability constants, and the results show that the thermodynamics of the complexation reactions is affected by the nature and composition of the mixed solvents and, in all cases, positive values of ΔS c o characterize the formation of these complexes. In addition, the experimental results show that the values of entropies for the complexation reactions between K+, Ag+, NH4+, and Hg2+ cations and DB18C6 in EtOAc-DMF binary solutions do not change monotonically with the solvent composition. The text was submitted by the authors in English.  相似文献   

2.
Thermodynamic quantities for the interactions of mono- and tri(2-methylenepropylene)-bridged cryptands, cryptand [3.3.1], cryptand [2.2.2], and 18-crown-6-with Na+, K+, Rb+, and Cs+ have been determined by calorimetric titration in an 80:20 (v/v) methanol: water solution at 25°C. Incorporation of the 2-methylenepropylene (–CH2C(=CH2)CH2–) bridge(s) into cryptand [2.2.2] results in a large change in the ligand-cation binding properties. Tri(2-methylenepropylene)-bridged cryptand [2.2.2] (2) shows high selectivity factors for Na+ over K+ and other alkali cations, while 2-methylenepropylene-bridged cryptand [2.2.2.] (1) selects K+ over Na+, as does cryptand [2.2.2]. The K+/Na+ selectivity is reversed with increasing number of 2-methylenepropylene bridges. This observation indicates that increasing the number of 2-methylenepropylene bridges on cryptand [2.2.2] favors complexation of a small cation over a large one. The logK values for the formation of 1 and 2 complexes (except 1-Cs+ and 2-Na+) decrease as compared with those for the corresponding [2.2.2] complexes. Formation of six-membered chelate ring(s) by the propyleneoxy unit(s) of 1 and 2 with a cation stabilizes the cryptate complexes of the small Na+ and destabilizes the complexes of large alkali metal cations. Thermodynamic data indicate that the stabilities of the cryptate complexes studied are dominated mostly by the enthalpy change. In most cases, both stabilization of Na+ complexes and destabilization of the complexes of large alkali metal cations by six-membered chelate ring(s) also result from an enthalpic effect. Cryptand [3.3.1] shows a selectivity for K+ over Cs+, despite its two long CH2(CH2OCH2)3CH2 bridges. The [3.1] macroring portion of [3.3.1]may be too small to effectively bind the Cs+, resulting in the low stability of the Cs+ complex.  相似文献   

3.
The complex formation between La3+, UO22+ Ag+, and NH4+ cations and macrocyclic ligand, dicyclohexyl-18-crown-6 (DCH18C6), was studied in acetonitrile-tetrahydrofuran (AN-THF) binary mixtures at different temperatures using the conductometric method. The results show that with the exception of complexation of the NH4+ cation with DCH18C6 in pure acetonitrile, the stoichiometry of all the complexes is being 1: 1 (M: L). The stability constants of the complexes were determined using a GENPLOT computer program. The nonlinear behavior which was observed for changes of log K f of the complexes versus the composition of the mixed solvent was discussed in terms of solvent-solvent interaction in their binary solution, which results in changing the chemical and physical properties of the constituent solvents when they mix with one another and, therefore, changing the solvation capacities of the metal cations, crown ether molecules, and even the resulting complexes with changing the mixed solvent composition. The results show that the selectivity of DCH18C6 for the studied cations changes with the composition of the AN-THF binary system. The sequence of stabilities of complexes in an AN-THF binary solution (mol. % AN = 75.0) at 25°C is [(DCH18C6)La)]3+ > [(DCH18C6)UO2]2+ > [(DCH18C6)Ag]+ ∼ [(DCH18C6)NH4]+, but in the case of other binary systems of AN/THF (mol. % AN = 25.0 and 50.0) is [(DCH18C6)La]+ > [(DCH18C6)NH4]+ ∼ [DCH18C6)UO2]2+ > [(DCH18C6)Ag]+. The text was submitted by the authors in English.  相似文献   

4.
23Na NMR measurements were employed to monitor the stability of Na+ ion complexes with 18-crown-6 (18C6), dicycloxyl-18-crown-6 (DC18C6), dibenzo-18-crown-6 (DB18C6), 15-crown-5 (15C5) and benzo-15-crown-5 (B15C5) in binary acetonitrile–dimethylformamide mixtures of varying composition. In all cases, the variation of 23Na chemical shift with [crown]/[Na+] mole ratios indicated the formation of 1:1 complexes. The formation constants of the resulting complexes were evaluated from computer fitting of the mole ratio data to an equation which relates the observed chemical shifts to the formation constants. It was found that, in pure acetonitrile, the stabilities of the resulting 1:1 complexes vary in the order 15C5>DC18C6>B15C5>18C6>DB18C6, while in pure dimethylformamide the stability order is DC18C6>18C6>15C5>B15C5>DB18C6. The observed changes in the stability order could be related to the specific interactions between some crown ethers and acetonitrile. It was found that, in the case of all complexes, an increase in the percentage of dimethylformamide in the solvent mixtures would significantly decrease the stability of the complexes.  相似文献   

5.
The complexation of some alkali and alkaline earth cations with18-crown-6(18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexyl-18-crown-6 (DCY18C6), and dibenzopyridino-18-crown-6 (DBPY18C6) in a methanol solution has been studied by a competitive potentiometric titration using Ag+/Ag electrode as a probe. The stoichiometry and stability constants of the resulting complexes have been evaluated by the MINIQUAD program. The stoichiometry for all resulting complexes was 1:1. The order of stability of Ag+ complexes with desired crown ethers varied as DBPY18C6 > DCY18C6 > 18C6 > DB18C6.The stability of the resulting complexes for each of these crown ethers varies in the order ofK+ > Na+ and Ba2+ > Sr2+ > Ca2+ > Mg2+.For each of the used metal ions the major sequence of the stability constants of the resulting complexes varies as DCY18C6 > 18C6 > DB18C6 > DBPY18C6 with minor exceptions.  相似文献   

6.
The complexation reactions between 4′,4″(5″)-di-tert-butyldibenzo-18-crown-6 (DTBDB18C6) and Li+, Na+ and K+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 20 °C and in nitromethane solvent, the stability of the resulting complexes varied in the order K+ > Na+ > Li+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions. The ab initio studies calculated at B3LYP/6-31G level of theory, indicate the binding energy of complexes decreases with increasing cation size in the gas phase. In the solution phase, DTBDB18C6 preferentially forms complexes with the larger ions rather than the smaller ions because the solvation energies of the smaller ions are large enough to overcome and reverse the trends in gas phase complexation. The findings of this study suggest that the current understanding of the factors influencing the selectivity of metal ion complexation by crown ethers may be in need of revision.  相似文献   

7.
The complexation reactions between alkali and alkaline-earth metal cations with DB18C6 were studied in acetonitrile-methanol (AN-MeOH) and tetrahydrofuran-threechloromethane (THF-CHCl3) binary mixtures at different temperatures using the conductometric method. The obtained results show that in most cases, the DB18C6 forms 1:1 complexes with these metal cations and the stability of the complexes is affected by the nature and composition of the mixed solvents. The stability order of complexes in AN-MeOH binary systems was found to be Na+ > Li+, and in the case of THF-CHCl3 binary mixtures was Na+ > Ba2+ > Li+. An anomalous and interesting behavior was observed for the case of complexation of a K+ ion with DB18C6 in the AN-MeOH binary mixture and also for complexation of Mg2+ and Ca2+ cations with this ligand in pure THF and also in THF-CHCl3 binary systems. The values of the thermodynamic parameters (ΔH c o and ΔS c o ) for complexation reactions obtained from the temperature dependence of the stability constants and the results show that the complexes are both enthalpy-and entropy-stabilized. The text was submitted by the authors in English.  相似文献   

8.
《Polyhedron》1999,18(20):2597-2603
Macrotetracyclic complexes of nickel(II) containing crown ethers as pendant arms, [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2, were prepared and characterized. The binding constants of the complexes toward alkali metal ions are relatively small compared with those of free 15-crown-5 or 18-crown-6 and the reduction potentials of the [Ni(B)](ClO4)2 and [Ni(C)](ClO4)2 in the presence of alkali metal ions shift to the positive direction in the order Li+>Na+>K+ and K+>Na+>Li+, respectively.  相似文献   

9.
The complexation reactions between dibenzo-24-crown-8 (DB24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in different acetonitrile–nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance–mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in the order Tl+ > K+ > Rb+ > Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture. The TΔS° vs. ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reactions.  相似文献   

10.
The complexation reactions between dicyclohexano-24-crown-8 (DC24C8) and K+, Rb+, Cs+ and Tl+ ions were studied conductometrically in the different acetonitrile-nitromethane mixtures at various temperatures. The formation constants of the resulting 1:1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. At 25 °C and in all solvent mixtures used, the stability of the resulting complexes varied in order of Tl+ > K> Rb~ Cs+. The enthalpy and entropy changes of the complexation reactions were evaluated by the temperature dependence of formation constants. It was found that the stability of the resulting complexes increased with increasing nitromethane in the solvent mixture.  相似文献   

11.
The effects of Na+, K+ and Li+ cations on the fluorescence spectra of benzo[15]crown-5, benzo[18]crown-6 and dibenzo[18]crown-6 were investigated in acetonitrile. The alkali cation role observed was usually the complexation-enhanced quenching fluorescence effect (CEQF) in acetonitrile due to the increased fluorescence quenching rate of the complexed fluoroionophore. The association constants for 1 :1 stoichiometry InK a have been obtained using the relationship 1/K a[L 0] = (1 –P)2/P. It was shown that the preferential interaction rule of compatibility of cationic radii and macrocyclic ring size is in excellent agreement with the association constants obtained by fluorescence spectroscopy. The order of InK a found for benzo[15]crown-5 complexation was Li+ > Na+ > K+ and K+ > Na+ > Li+ for benzo[18]crown-6 in acetonitrile.Presented at the Sixth International Seminar on Inclusion Compounds, Istanbul, Turkey, 27–31 August, 1995.  相似文献   

12.
The complex formation between Na+, K+, Cs+, Rb+ and Tl+ metal cations with macrocyclic ligand, dicyclohexyl-18-crown-6 (DCH18C6) was studied in acetonitrile-water (AN-H2O) binary systems at different temperatures using conductometric method. DCH18C6 forms 1:1 complexes with these metal cations. The stability constants of the complexes were obtained from fitting of molar conductivity curves using a computer program Genplot. The results show that the selectivity order of DCH18C6 for the metal cations in acetonitrile-water mixtures (AN = 25.3 and 50.4 mol %) is: Tl+ > K+ > Rb+ > Cs+ > Na+. A non-linear behaviour was observed between the log K f of the complexes versus the composition of the mixed solvent which it related to changes of acidity, basicity, polarity and also polarizability of AN-H2O mixtures with the composition of this binary solution. The values of standard enthalpy changes (ΔH s0) for complexation reactions were obtained from the slope of the van’t Hoff plots and the changes in the standard entropy (ΔS s0) were calculated from the relationship: ΔG s,298.150 = ΔH s0 − 298.15ΔS s0. The obtained results show that in most cases, the complexes are enthalpy stabilized but entropy destabilized. Original Russian Text ? M.H. Soorgi, G.H. Rounaghi, M.S. Kazemi, 2008, published in Zhurnal Obshchei Khimii, 2008, vol. 78, No. 10, pp. 1627–1632.  相似文献   

13.
The complexation reaction of phenylaza-15-crown-5, and 4-nitrobenzo-15-crown-5, benzo-15-crown-5 and dibenzopyrdino-18-crwon-6, dibenzo-18-crown-6,dicyclohexyl-18-crown-6(cis and trans), and 18-crown-6 with Na+ ion in methanol have been studied by potentiometric method. The Na+ ion-selective electrode has been used both as indicator and reference electrode. The stoichiometry and stability constants of complexes of these crown ethers with sodium ion were evaluated by MINIQUAD program. The major trend of stability of resulting complexes of these macrocycle with Na+ ion varied in the order DCY18C6 > DB18C6 > 18C6 > DBPY18C6 > phenylaza-15C5 > benzo-15C5 > 4-nitrobenzo-15C5. The obtained results in particular stability constant of complexes of DBPY18C6, phenylaza-15C5 and 4-nitrobenzo-15C5 with sodium ion in comparison with other crowns ether are novel, and interesting.  相似文献   

14.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

15.
The complexation reactions between Ag+, Hg2+ and Pb2+ metal cations with aza-18-crown-6 (A18C6) were studied in dimethylsulfoxide (DMSO)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stoichiometry of the complexes in most cases is 1:1(ML), but in some cases 1:2 (ML2) complexes are formed in solutions. A non-linear behaviour was observed for the variation of log K f of the complexes vs. the composition of the binary mixed solvents. Selectivity of A18C6 for Ag+, Hg2+ and Pb2+ cations is sensitive to the solvent composition and in some cases and in certain compositions of the mixed solvent systems, the selectivity order is changed. The values of thermodynamic parameters (ΔH co, ΔS co) for formation of A18C6–Ag+, A18C6–Hg2+ and A18C6–Pb2+ complexes in DMSO–H2O binary systems were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

16.
Substitution reactions of five monofunctional Pd(II) complexes, [Pd(terpy)Cl]+ (terpy = 2,2′;6′,2″-terpyridine), [Pd(bpma)Cl]+ (bpma = bis(2-pyridylmethyl)amine), [Pd(dien)Cl]+ (dien = diethylenetriamine or 1,5-diamino-3-azapentane), [Pd(Me4dien)Cl]+ (Me4dien = 1,1,7,7-tetramethyldiethylenetriamine), and [Pd(Et4dien)Cl]+ (Et4dien = 1,1,7,7-tetraethyldiethylenetriamine), with unsaturated N-heterocycles such as 3-amino-4-iodo-pyrazole (pzI), 5-amino-4-bromo-3-methyl-pyrazole (pzBr), 1,2,4-triazole, pyrazole, pyrazine, and imidazole were investigated in aqueous 0.10 M NaClO4 in the presence of 10 mM NaCl using variable-temperature stopped-flow spectrophotometry. The second-order rate constants k2 indicate that the reactivity of the Pd(II) complexes decrease in the order [Pd(terpy)Cl]+ > [Pd(bpma)Cl]+ > [Pd(dien)Cl]+ > [Pd(Me4dien)Cl]+ > [Pd(Et4dien)Cl]+. The most reactive nucleophile of the heterocycles is pyrazine, while the slowest reactivity is with pyrazole. Activation parameters were determined for all reactions and negative entropies of activation, ΔS, supporting an associative mode of substitution. The reactions between [Pd(bpma)Cl]+ and 1,2,4-triazole, pzI, and pzBr were also investigated by 1H NMR to define the manner of coordination. These results could be useful for better explanation of structure-reactivity relationships of Pd(II) complexes as well as for the prediction of potential targets of Pd(II) complexes toward common N-heterocycles, constituents of biomolecules and different N-bonding pharmaceutical agents.  相似文献   

17.
The 13C spin-lattice relaxation times (T1's) of cryptands [2.1.1], [2.2.1] and [2.2.2] as well as those of the corresponding cryptate complexes with Li+, Na+, and K+ in CDCl3 and CH3OH:D2O (90:10) were measured and the results are interpreted in terms of molecular compression and desolvation effects.  相似文献   

18.
The complexation reactions betweenT1+, Hg2+ andAg+ metal cations with 18-Crown-6 (18C6)were studied in acetonitrile (AN)-methanol (MeOH) andbenzonitrile (BN)-methanol (MeOH) binary mixtures at differenttemperatures using the conductometric method. The conductance datashow that the stoichiometry of the complexes in most cases is1 : 1 (ML), but in the case of theTl+ cation, in addition to a1 : 1 complex, a 1 : 2 (ML2)complex is formed in solutions. A non-linear behaviourwas observed for the variation of log Kfof the complexes vs the composition of the binary mixed solvents. The stability of 18C6 complexes with T1+, Hg2+ and Ag+ cations is sensitive to solvent composition and in some cases, the stability order is changed with changingthe composition of the mixed solvents. The values of the thermodynamic parameters (Δ Hc°, Δ Sc°) for formation of 18C6-T1+, 18C6-Hg+2 and the 18C6-Ag+ complexes were obtained from the temperature dependence of the stability constants and the results show that the thermodynamics of the complexationreactions is affected by the nature and composition of the mixed solvents and in most cases, the complexes are enthalpy destabilized but entropy stabilized.  相似文献   

19.
Cesium-133 nuclear magnetic resonance spectroscopy was used as a sensitive probe to investigate the stoichiometry and stability of Cs+ ion complexes with aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6) and dibenzylediaza-18-crown-6 (DBzDA18C6) in different binary acetonitrile?Cnitromethane mixtures. In all cases, the exchange between free and complexed cesium ion was fast on the NMR time scale and only a single population average resonance was observed. The 133Cs chemical shift?Cmole ratio data indicated that the cesium ion forms 1:1 cation?Cligand complexes with the investigated aza-crowns in all acetonitrile?Cnitromethane mixtures. The formation constants of the resulting complexes were evaluated from computer fitting of the chemical shift?Cmole ratio data. The stability of the resulting 1:1 complexes with Cs+ were found to vary in the order A18C6 > DBzDA18C6 > DA18C6. In all cases, there is the inverse relationship between the complex stability constants and the amount of acetonitrile in the mixed solvent.  相似文献   

20.
《Analytical letters》2012,45(17):1937-1946
Abstract

The complexes formed by the Na+, K+, Rb+, Ca2+, UO2+ 2, and Ag+ cations with the macrocyclic polyethers 18-crown-6, benzo-15-crown-5, and dicyclohexy1-18-crown-6 are investigated. The stability constants of these complexes have been determined potentiometrically in (90% vol.) ethanol-water solutions at 25[ddot]C and an ionic strength μ= 0.1 (achieved with tetrabuty lammonium perchlorate). The stablity of the investigated complexes was interpreted in terms of “caging” the metal cation into the cavity of the macrocyclic ligand, an effect which depends on the ratio of the diameter of the complexed cation over the diameter of the cavity of the complexing ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号