首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of ozone with propene, 1-butene, cis-2-butene, trans-2-butene, 2,3-dimethyl-2-butene, and 1,3-butadiene were carried out in N2 and air diluent at atmospheric pressure and room temperature and, by monitoring the formation of the epoxides and/or a carbonyl compound formed from the reactions of O(3P) atoms with these alkenes, the formation yields of O(3P) atoms from the O3 reactions were investigated. No evidence for O(3P) atom formation was obtained, and upper limits to O(3P) atom formation yields of <4% for propene, <5% for 1.3-butadiene, and <2% for the other four alkenes were derived. The reaction of O3 with 1,3-butadiene led to the direct formation of 3,4-epoxy-1-butene in (2.3 ± 0.4)% yield. These data are in agreement with the majority of the literature data and show that O(3P) atom formation is not a significant pathway in O3—alkene reactions, and that epoxide formation only occurs to any significant extent from conjugated dienes. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The kinetics of the reaction of O(3P) atoms with acetone were investigated using fast flow methods. The reaction was studied over a temperature range of 298 to 478°K. The specific rate constant obtained was (1.9 ± 0.4) × 1012 exp(—5040 ± 180/1.987 T) cm3/mol·sec. The observation of a sizable primary H/D kinetic isotope effect in comparing rates of CH3COCH3 and CD3COCD3 led to the conclusion that the major reaction channel involves H atom abstraction, namely, The rather low Arrhenius preexponential factor obtained in this reaction is compared and contrasted with those reported for other reactions of O(3P) with low molecular weight compounds.  相似文献   

3.
The kinetics of the reactions of O(3P) and D atoms with cyclohexane have been investigated using fast-flow techniques. The rates of reaction were computed by monitoring changes in both atom and cyclohexane concentrations using electron spin resonance and mass spectrometric methods, respectively. The O(3P) + C6H12 reaction was studied over a temperature range of 344 to 513°K and we obtain a specific rate constant of (3.2±0.6) × 1014 exp (?4400±400/RT) cm3/mole˙sec for this reaction. The only reaction product detectable mass spectrometrically under flow conditions of excess oxygen atoms is formaldehyde. The D + C6H12 reaction was studied over a temperature range of 297 to 596°K. A specific rate constant of (4.1±1.0) × 1013 exp (?4000±300/RT) cm3/mole˙sec was obtained for this reaction. On the basis of the results obtained in these studies, the important primary process in both the O(3P) and D atom reactions is concluded to be abstraction of a hydrogen atom from the cyclohexane molecule.  相似文献   

4.
The mechanism and kinetics of the reaction of O(3P) atoms with propane were investigated using molecular modulation spectroscopy, with the O(3P) atoms being generated by the Hg photosensitized decomposition of N2O. The absorption spectrum of the X2II3/2 state of OH was observed in the ultraviolet between 307 and 309 nm, and it was confirmed that OH was the product of the O(3P) reaction with propane. The rate constants for the reactions of O(3P) and OH with propane were determined to be 3.9±0.7±1010 and 1.19±0.05±1012 cm3/mole·sec, respectively, at T=56±5°C.  相似文献   

5.
The kinetics of the gas phase reaction between O(3P) atoms and N2O5 have been examined in a discharge-flow mass spectrometer at 4.5 torr (N2) total pressure. At O(3P) concentrations (5–10) × 1014 molecules/cm3, the decay of N2O5 was very small and only slightly greater than the data scatter. From these data, upper limits to the rate constant of this reaction was obtained at 223 and 300 K: k223 and k300 ? 3 × 10?16 cm3/molecule s.  相似文献   

6.
The flash photolysis–vacuum ultraviolet kinetic absorption spectroscopy technique has been used to measure the absolute rate constant for the reaction of ground state S(3P) atoms withnitric oxide,\documentclass{article}\pagestyle{empty}\begin{document}${\rm S}\left({^{\rm 3} P} \right) + {\rm NO}\mathop {\longrightarrow}\limits^{\rm M} {\rm SNO}\left({{\rm M} = {\rm CO}_2} \right)$\end{document} as a function of nitric oxide concentration and total pressure. The rateconstant was determined to be 1.9±0.1 × 1011 12/mol2.sec at 298°K, with a high-pressure limit of 9.3 ± 2.1×109 l/mol·sec?1. The observed kinetics are consistent with a termolecular energy transfer mechanism.  相似文献   

7.
The laser photolysis-long path transient absorption technique was used to study the mechanism and products of the reaction O(3P) + OClO (→M) Products (3) at 260 K in 100 to 400 torr of He, N2, and Ar. ClO was not detected as a reaction product, <5% yield, from this reaction at 400 torr and 260 K. A broad UV absorption feature associated with a product of this reaction, with a peak located at 260 nm, was observed. The peak absorption cross section of this species was measured to be (1.72 ± 0.12) × 10−17 cm2 molecule−1. The rate coefficient for the appearance of this species was measured to be (1.69 ± 0.46) × 10−13 cm3 molecule−1 s−1 and was independent of pressure. The rate coefficient for the appearance of the species is ca. 10 times lower than that for the disappearance of O(3P), indicating that the observed species is not a direct product of the reaction of O(3P) with OClO. Mechanistic considerations and the possible identity of the absorber are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
The rate constant for the reaction of O(3P) with H2O2 was measured as a function of temperature and the [H2O2]0/[O]0 ratio. The numerical solution of the appropriate rate equations was used to arrive at a mechanism which adequately describes our results and the rather divergent data in the literature. A recommended expression for the temperature dependence of the absolute rate constant is presented from consideration of the available experimental data.  相似文献   

9.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of the reaction of O(3P) with CF3NO (k2) as a function of temperature. Our results are described by the Arrhenius expression k2(T) = (4.54 ± 0.70) × 10?12 exp[(?560± 46)/T] cm3molecule?1 s?1 (243 K ? T ? 424 K); errors are 2σ and represent precision only. The O(3P) + CF3NO reaction is sufficiently rapid that CF3NO cannot be employed as a selective quencher for O2(a1Δg) in laboratory systems where O(3P) and O2(a1Δg) coexist, and where O(3P) kinetics are being investigated. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
The reaction of O(3P), prepared from the Hg photosensitization of N2O, with C2HCl3 was studied at 25°C. The products of the reaction in the absence of O2 were CO, CHCl3, and polymer (as well as N2 from the N2O). The quantum yields of CO and CHCl3 were 0.23 ± 0.01 and 0.14 ± 0.05, is respectively independent of reaction conditions. The reaction mechanism is with k14a/k14 = 0.23, where k14a + k14b. Most of the HCl and CCl2 combine to form CHCl3, but some other products must also be formed to account for the difference in the CO and CHCl3 quantum yields. The C2HCl3O* adduct polymerizes without involving additional C2HCl3 molecules, since the quantum yield of C2HCl3 disappearance, ? Φ{C2HCl3}, was about 1.0 at high values of [N2O]/[C2HCl3]. The rate coefficient for the reaction of O(3P) with C2HCl3 is 0.10 that for the reaction of O(3P) with C2F4. In the presence of O2 the free radical chain oxidation occurs because of the reaction The main product is CHCl2CCl(O) with smaller amounts of CO and CCl2O, and some CO2. The chain lengths were long and values of ? Φ {C2HCl3} up to 90 were observed.  相似文献   

11.
A flow tube method has been used to determine rate constants for the elementary reactions: Oxygen atoms were produced by adding a small excess of NO to a stream of partially dissociated nitrogen, and their reaction with hydrogen halide was monitored by observing the intensity of the NO + O afterglow. Experiments were carried out at temperatures from 293 to 440°K with HCl, and from 267 to 430°K with HBr. The role of secondary reactions was minimised and the residual effects were allowed for. The rate constants for the primary reactions could be matched by Arrhenius expressions: where the units are cm3/molec·sec and the errors correspond to a standard deviation.  相似文献   

12.
The reaction of O(3P) atoms with isobutane has been studied by using the discharge-flow system described previously [1]. The rate constant was measured from determinations of the isobutane concentration in the presence of an excess of O atoms and is given by k1 = (7.9 ± 1.4) × 107 dm3/mol·s at 307 K. In order to explain the observed reaction products, the mechanism requires that the principal process be the successive abstraction of H atoms from isobutane and from the t-butyl radical to give isobutene. A minor part of the reaction between O(3P) and the t-butyl radical gives the t-butoxy radical, which decomposes to acetone. The branching ratios are .  相似文献   

13.
The reaction of O(3P) atoms with propanehas been studied at temperatures near 300 K by using a discharge flow system. Oxygen atoms were generated in the absence of molecular oxygen by the reaction N + NO → N2 + O, nitrogen atoms having been generated in a microwave discharge. Rate constants for the reaction were measured in two ways, either by measurement of O-atom decay in the presence of excess propane or by measuring the change in propane concentration after an appropriate time in the presence of an excess of oxygen atoms. The two methods were in good agreement, and the mean rate constant at 306 K is given by A study of the products of the reaction under conditions corresponding to complete removal of oxygen atoms has shown that an important product of the reaction in the early stages is propene. This is difficult to explain interms of a mechanism involving alkoxy radicals similar to that which has been proposed for some other O(3P)–hydrocarbon reactions. An alternative mechanism is proposed in terms of successive hydrogen abstraction reactions.  相似文献   

14.
Using laser-induced fluorescence of ozone (to measure the rate of disappearance of O32) and NO2 titration (to determine O atom concentrations), we have determined bimolecular rate constants for the deactivation by O(3P atoms) of ozone in excited stretching and bending modes. These experiments do not distinguish between deactivation by (a) the exchange of vibrational and translational energy or (b) the chemical reaction O3 + O → 2O2. If the non-reactive pathway (a) is assumed to dominate, then O(3P) is 150 times more effective than O2 in deactivating O23. If chemical reaction (b) is dominant, the bimolecular rate constant for O23 + O(3P) is larger by a factor of 150–1500 than that for ground-state ozone.  相似文献   

15.
The kinetics of the reaction of O + CH3OCH3 were investigated using fast-flow apparatus equipped with ESR and mass-spectrometric detection. The concentration of O(3P) atoms to CH3OCH3 was varied over an unusually large range. The rate constant for reaction was found to be k = (5.0 ± 1.0) × 1012 exp [(?2850 ± 200/RT)] cm3 mole?1 sec?1. The reaction O + CH3OH was studied using ESR detection. Based on an assumed stoichiometry of two oxygen atoms consumed per molecule of CH3OH which reacts, we obtain a value of k = (1.70 ± 0.66) × 1012 exp [(?2,280 ± 200/RT)] cm3 mole?1 sec?1 for the reaction The results obtained in this study are compared with the results from other workers on these reactions. The observation of essentially equal activation energies in these two reactions is indicative of approximately equal C? H bond strengths in CH3OCH3 and CH3OH. This is in agreement with recent measurements of these bond energies.  相似文献   

16.
The sulfur kinetic isotope effect (KIE) in the reaction of carbonyl sulfide (OCS) with O((3)P) was studied in relative rate experiments at 298 ± 2 K and 955 ± 10 mbar. The reaction was carried out in a photochemical reactor using long path FTIR detection, and data were analyzed using a nonlinear least-squares spectral fitting procedure with line parameters from the HITRAN database. The ratio of the rate of the reaction of OC(34)S relative to OC(32)S was found to be 0.9783 ± 0.0062 ((34)ε = (-21.7 ± 6.2)‰). The KIE was also calculated using quantum chemistry and classical transition state theory; at 300 K, the isotopic fractionation was found to be (34)ε = -14.8‰. The OCS sink reaction with O((3)P) cannot explain the large fractionation in (34)S, over +73‰, indicated by remote sensing data. In addition, (34)ε in OCS photolysis and OH oxidation are not larger than 10‰, indicating that, on the basis of isotopic analysis, OCS is an acceptable source of background stratospheric sulfate aerosol.  相似文献   

17.
Earlier work on the reactions of O(3P) atoms with HCl and HBr has been extended by measuring rate constants for A flow-tube method was used with chemiluminescent monitoring of the removal of atomic oxygen. Rate constants were measured at temperatures between 340 and 489 K for (2a) and 295 and 419 K for (2b); they can be matched by the Arrhenius expressions: where the units are cm3 molecule?1 sec?1 and the errors correspond to a single standard deviation. The results of a quasiclassical trajectory study of collisions of O(3P) with HCl (v = 0,1, and 2) and DCl (v= 0,1, and 2) are also reported. These strengthen the conclusion that, although the rates of reactions (1a) and (2a) are selectively enhanced by vibrationally exciting HCl or DCl, molecules with 0 < v ? 2 are mainly removed in collisions with O(3P) atoms by nonreactive relaxation.  相似文献   

18.
The adiabatic mechanism of the reaction of trichloroethylene with O(3P), exploring the various O-atom addition and H-atom abstraction channels, is theoretically studied at the MP2/6-311++G(2d, 2p), MP2/aug-cc-pVTZ, CCSD/6-31G(d), G3, and CBS-QB3 levels of theory. From a kinetic point of view, the addition to the less substituted carbon atom of the double bond is more favorable than the addition to the more substituted carbon. Such O-atom addition reactions are favored over the one possible hydrogen-abstraction reaction. Calculations of the present study showed that five products are obtained: HCCl + C(O)Cl2 (P1), Cl + ClC(O)CHCl (P2), H + ClC(O)CCl2 (P3), Cl + HC(O)CCl2 (P4), and CH(O)Cl + CCl2 (P5). The products P2 and P4 are found to be the most favored ones. The kinetic calculations of rate constant in the range of 285–395 K are performed at the CBS-QB3 level of theory and are in conformity with the experimental outcomes.  相似文献   

19.
The reaction of O((3)P) with isobutene ((CH(3))(2)C=CH(2)) is investigated using the unrestricted second-order M?ller-Plesset perturbation (UMP2) and complete basis set CBS-4M level methods. The minimum energy crossing point (MECP) between the singlet and triplet potential energy surfaces is located using the Newton-Lagrange method, and it is shown that the MECP plays a key role. The calculational results indicate that the site selectivity of the addition of O((3)P) to either carbon atom of the double bond of isobutene is weak, and the major product channels are CH(2)C(O)CH(3) + CH(3,) cis-/trans-CH(3)CHCHO + CH(3), (CH(3))(2)CCO + H(2), and CH(3)C(CH(2))(2) + OH, among which (CH(3))(2)CCO + H(2) is predicted to be the energetically most favorable one. The complex multichannel reaction mechanisms are revealed, and the observations in several recent experiments could be rationalized on the basis of the present calculations. The formation mechanisms of butenols are also discussed.  相似文献   

20.
The absolute rate constant of the reaction of O(3P) with toluene was measured by the microwave discharge-fast-flow method to obtain kT = 109.7–2.7/2.303RT l./mole·sec at 100–375°C. This was in good agreement with the rate constant calculated from the combination of the relative rate constant obtained by Jones and Cvetanovic with the recently determined absolute rate constants of the reaction of O(3P) + olefins. The extrapolation of the above Arrhenius plot to 27°C was also in good agreement with the absolute value of kT = 4.5 × 107 l./mole·sec determined recently by Atkinson and Pitts at 27°C. The rate constant of the reaction of chlorobenzene with O(3P), obtained at 238°C as 108.3 l./mole·sec by a competitive method, was smaller than kT by a factor of about two at the same temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号