首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the anomalous collision-induced dissociation (CID) behavior of the proton-bound Hoogsteen base pair of cytosine (C) and guanine (G), C:H+???G, we investigated CID of a homologue series of proton-bound heterodimers of C, 1-methylcytosine, and 5-methylcytosine with G as a common base partner. The CID experiments were performed in an energy-resolved way (ER-CID) under both multiple and near-single collision conditions. The relative stabilities of the protonated complexes examined by ER-CID suggested that the proton-bound complexes produced by electrospray ionization in this study are proton-bound Hoogsteen base pairs. On the other hand, in contrast to the other base pairs, CID of C:H+???G exhibited more abundant productions of C:H+, the fragment protonated on the moiety with a smaller proton affinity, than that of G:H+. This appeared to contradict general prediction based on the kinetic method. However, further theoretical exploration of potential energy surfaces found that there can be facile proton transfers in the proton-bound Hoogsteen base pairs during the CID process, which makes the process accessible to an additional product state of O-protonated C for C:H+ fragments. The presence of an additional dissociation channel, which in other words corresponds to twofold degeneracy in the transition state leading to C:H+ fragments, effectively doubles the apparent reaction rate for production of C:H+. In this way, the process gives rise to the anomaly, the observed pronounced formation of C:H+ in the CID of the proton-bound Hoogsteen base pair, C:H+???G.
Graphical Abstract ?
  相似文献   

2.
Per-O-acetylated methyl glycosides of D -xylan-type di- and trisaccharides were studied by mass-analysed ion kinetic energy (MIKE) and collisionally induced dissociation (CID) mass Spectrometry using protonated ammonia and methylamine, respectively, as reaction gases in chemical ionization (CI). The oligosaccharides form abundant cluster ions, [M + NH4]+ or [M + CH3NH3]+, and the main fragmentation of these ions in the MIKE and CID spectra is the cleavage of interglycosidic linkages. Thus, CI (NH3) or CI (CH3NH2) spectra in combination with the MIKE or CID spectra allow the molecular masses, the masses of monosaccharide units and the branching point in oligosaccharides to be established. In the case of disaccharides, it is possible to distinguish the (1 → 2) linkage from the other types of linkages.  相似文献   

3.
Infrared multiphoton dissociation (IRMPD) on a linear ion trap mass spectrometer is applied for the sequencing of small interfering RNA (siRNA). Both single-strand siRNAs and duplex siRNA were characterized by IRMPD, and the results were compared with that obtained by traditional ion trap-based collision induced dissociation (CID). The single-strand siRNA anions were observed to dissociate via cleavage of the 5′ P—O bonds yielding c- and y-type product ions as well as undergo neutral base loss. Full sequence coverage of the siRNA anions was obtained by both IRMPD and CID. While the CID mass spectra were dominated by base loss ions, accounting for ∼25% to 40% of the product ion current, these ions were eliminated through secondary dissociation by increasing the irradiation time in the IRMPD mass spectra to produce higher abundances of informative sequence ions. With longer irradiation times, however, internal ions corresponding to cleavage of two 5′ P—O bonds began to populate the product ion mass spectra as well as higher abundances of [a − Base] and w-type ions. IRMPD of siRNA cations predominantly produced c- and y-type ions with minimal contributions of [a − Base] and w-type ions to the product ion current; the presence of only two complementary series of product ions in the IRMPD mass spectra simplified spectral interpretation. In addition, IRMPD produced high abundances of protonated nucleobases, [G + H]+, [A + H]+, and [C + H]+, which were not detected in the CID mass spectra due to the low-mass cut-off associated with conventional CID in ion traps. CID and IRMPD using short irradiation times of duplex siRNA resulted in strand separation, similar to the dissociation trends observed for duplex DNA. With longer irradiation times, however, the individual single-strands underwent secondary dissociation to yield informative sequence ions not obtained by CID.  相似文献   

4.
The collision-induced dissociation mass-analysed ion kinetic energy (CID MIKE) spectra (electron impact and chemical ionization) of five α-diazo-ω-arylsulphonylaminoalkan-2-ones and corresponding N-arylsulphonylazetidin-3-ones and N-arylsulphonylpyrrolidin-3-ones were studied. The [M ? N2]+˙ and [MH ? N2]+ ions of two types of the diazo ketones provide CID MIKE spectra similar to those of the corresponding M+˙ and MH+ of the heterocyclic compounds, i.e. a cyclization analogous to that in solution takes place. For the other three types of diazo compounds the Wolff rearrangement prevails in both the gas and liquid phases. The effect of the substituents on the cyclization process was studied. The data obtained permit the results of acid-catalysed cyclization of similar diazo ketones to be predicted on the basis of their CID MIKE spectra. Chemical ionization provides a closer similarity with reactions in solution than electron impact ionization, which can be rationalized by the protonation of the diazo ketone molecule being the driving force of the cyclization reaction either in solution or in the ion source of a mass spectrometer.  相似文献   

5.
Gaseous oxygen and nitrogen bases, both singly and as binary mixtures, have been introduced into ion mobility spectrometers to study the appearance of protonated molecules, and proton-bound dimers and trimers. At ambient temperature it was possible to simultaneously observe, following the introduction of molecule A, comparable intensities of peaks ascribable to the reactant ion (H2O)nH+, the protonated molecule AH+ and AH+ · H2O, and the symmetrical proton bound dimer A2H+. Mass spectral identification confirmed the identifications and also showed that the majority of the protonated molecules were hydrated and that the proton-bound dimers were hydrated to a much lesser extent. No significant peaks ascribable to proton-bound trimers were obtained no matter how high the sample concentration. Binary mixtures containing molecules A and B, in some cases gave not only the peaks unique to the individual compounds but also peaks due to asymmetrical proton bound dimers AHB+. Such ions were always present in the spectra of mixtures of oxygen bases but were not observed for several mixtures of oxygen and nitrogen bases. The dimers, which were not observable, notable for their low hydrogen bond strengths, must have decomposed in their passage from the ion source to the detector, i.e. in a time less than ∼5 ms. When the temperature was lowered to −20 °C, trimers, both homogeneous and mixed, were observed with mixtures of alcohols. The importance of hydrogen bond energy, and hence operating temperature, in determining the degree of solvation of the ions that will be observed in an ion mobility spectrometer is stressed. The possibility is discussed that a displacement reaction involving ambient water plays a role in the dissociation.  相似文献   

6.
When mass-analysed ion kinetic energy (MIKE) spectra are required to discriminate between isomeric ions formed under conditons of fast atom bombardment (FAB) in the ion source, severe interference may be observed. The interfering peaks in MIKE spectra obtained with a reversed-geometry instrument can arise from different sources. Moreover, the intensity distribution of the true ions from the selected precursor ion may depend strongly on the instrument being used. This means that the FAB–MIKE or collisionally induced dissociation (CID) spectrum is not an absolute characteristic of a particular ion. The [M + H ? HOAc]+ ion in the spectrum of peracetylated ribopyranose is used as an example to illustrate this and to trace and discuss the origin of the phenomena observed.  相似文献   

7.
Primary and secondary amines, when examined in atmospheric pressure chemical ionization, electrospray ionization, or chemical ionization, display protonated imines in their mass spectra. These products arise formally by nucleophilic substitution at the α-carbon with loss of both ammonia and molecular hydrogen. Collision-induced dissociation (CID) is used to characterize the product ions by comparison with authentic protonated imines. Gas-phase ion/molecule reactions of protonated amines with neutral amines also yield products that correspond to protonated imines (deamination and dehydrogenation), as well as providing simple deamination products. The reaction mechanism was investigated further by reacting the deamination product, the alkyl cation, with a neutral amine. The observed dehydrogenation of the nascent protonated secondary amine indicates that the reaction sequence is loss of ammonia followed by dehydrogenation even though the isolated protonated secondary amines did not undergo dehydrogenation upon CID. Formation of the deamination products in the protonated amine/amine reaction is competitive with proton-bound dimer formation. The proton-bound dimers do not yield deamination products under CID conditions in the ion trap or in experiments performed using a pentaquadrupole instrument. This demonstrates that the geometry of the proton-bound dimer, in which the α-carbons of the alkylamines are well separated [C a -N-H-N-C a ], is an unsuitable entry point on the potential energy hypersurface for formation of the imine [C a -N-C a ]. Isolation of the proton-bound dimers in the quadrupole ion trap is achieved with low efficiency and this characteristic can be used to distinguish them from their covalently bound isomers.  相似文献   

8.
We present infrared multiple photon dissociation (IRMPD) spectra in the hydrogen stretching region of the simplest b fragment, b2 from protonated triglycine, contrasted to that of protonated cyclo(Gly-Gly). Both spectra confirm the presence of intense, diagnostic vibrations linked to the site of proton attachment. Protonated cyclo(Gly-Gly) serves as a reference spectrum for the diketopiperazine structure, showing a diagnostic O-H+ stretch of the protonated carbonyl group at 3585 cm–1. Conversely, b2 from protonated triglycine exhibits a strong band at 3345 cm–1, associated with the N-H stretching mode of the protonated oxazolone ring structure. Other weaker N-H stretches can also be discerned, such as the amino NH2 and amide NH bands. These results demonstrate the usefulness of the hydrogen stretching region, and hence benchtop optical parametric oscillator/amplifier (OPO/A) set-ups, in making structural assignments of product ions in collision-induced dissociation (CID) of peptides.  相似文献   

9.
Dissociation of the amide bonds in a protonated peptide leads to N-terminal sequence fragments with cyclic structures and C-terminal sequence fragments with linear structures. The ionic fragments containing the N-terminus (b n ) have been shown to be protonated oxazolones, whereas those containing the C-terminus (y n ) are protonated linear peptides. The coproduced neutral fragments are cyclic peptides from the N-terminus and linear peptides from the C-terminus. A likely determinant of these structural choices is the proton affinity (PA) of the described peptide segments. This study determines the PA values of such segments (Pep), i.e., cyclic and linear dipeptides and a relevant oxazolone, based on the dissociations of proton-bound dimers [Pep + B i ]H+ in which B i is a reference base of known PA value (Cooks kinetic method). The dissociations are assessed at different internal energies to thereby obtain both proton affinities as well as entropies of protonation. For species with comparable amino acid composition, the proton affinity (and gas phase basicity) follows the order cyclic peptide ≪ oxazolone ≈ linear peptide. This ranking is consistent with dissociation of the protonated peptide via interconverting proton-bound complexes involving N-terminal oxazolone (O) or cyclopeptide (C) segments and C-terminal linear peptide segments (L), viz. O ⋯ H+ ⋯ L ⇄ C ⋯ H+ ⋯ L. N-terminal sequence ions (b n ) are formed with oxazolone structures which can efficiently compete for the proton with the linear segments. On the other hand, N-terminal neutral fragments detach as cyclic peptides, with H+ now being retained by the more basic linear segment from the C-terminus to yield y n .  相似文献   

10.
The liquid secondary ion mass spectrometry and electron impact ionization fragmentation pathways of 1,9-bis(dimethylamino)-2,8-dimethoxy-dibenzofuran (1), a new proton-sponge base with increased steric compression (buttressing) and much higher basicity (pKa = 14.3), and of its monoprotonated (2) and monodeuterated (3) salts were invetigated in a collision-induced dissociation (CID) tandem mass spectrometric study supported by unimolecular linked scans at constant B/E, CID mass-analysed ion kinetic energy spectra and accurate mass measurements. They show an ‘extended’ proximity effect, involving the stepwise participation of all the four functional groups, in addition to the ‘normal’ proximity effect involving loss of Me2NH and H˙. The behaviour of 1 appears to differ in some ways from that of its protonated (2) or deuterated (3) salts. The unprecedented observation of the maintenance of the hydrogen (or deuterium) bridge under soft ionization in the salts of very strong proton-sponge bases, which show buttressing effects in solution, is strong experimental support for the conservation of these buttressing effects in the gas phase, where the protonated (or deuterated) cations of salts such as 2 (or 3) are very stable, H+ (or D+) being completely ‘sequestered.’  相似文献   

11.
Infrared multiple photon dissociation (IRMPD) spectroscopy is used to identify the structure of the b 2+ ion generated from protonated tri-alanine by collision induced dissociation (CID). The IRMPD spectrum of b 2+ differs markedly from that of protonated cyclo-alanine-alanine, demonstrating that the product is not a diketopiperazine. Instead, comparison of the IRMPD spectrum of b 2+ to spectra predicted by density functional theory provides compelling evidence for an oxazolone structure protonated at the oxazolone N-atom.  相似文献   

12.
To test the similarity of chemical ionization (CI) spectra of esters to the collision-induced decomposition mass-analyzed ion kinetic energy (CID-MIKE) spectra of protonated esters, the CID-MIKE spectra of the [M + 1]+ ions of nineteen aliphatic esters were studied. The major fragments produced in the two kinds of experiment are similar, but there are significant differences in the ions of high mass, which would reduce the usefulness of library searches of CI spectra to identify MIKE spectra of [M + 1]+ ions.  相似文献   

13.
The dissociation chemistry of somatostatin‐14 was examined using various tandem mass spectrometry techniques including low‐energy beam‐type and ion trap collision‐induced dissociation (CID) of protonated and deprotonated forms of the peptide, CID of peptide‐gold complexes, and electron transfer dissociation (ETD) of cations. Most of the sequence of somatostatin‐14 is present within a loop defined by the disulfide linkage between Cys‐3 and Cys‐14. The generation of readily interpretable sequence‐related ions from within the loop requires the cleavage of at least one of the bonds of the disulfide linkage and the cleavage of one polypeptide backbone bond. CID of the protonated forms of somatostatin did not appear to give rise to an appreciable degree of dissociation of the disulfide linkage. Sequential fragmentation via multiple alternative pathways tended to generate very complex spectra. CID of the anions proceeded through CH2? S cleavages extensively but relatively few structurally diagnostic ions were generated. The incorporation of Au(I) into the molecule via ion/ion reactions followed by CID gave rise to many structurally relevant dissociation products, particularly for the [M+Au+H]2+ species. The products were generated by a combination of S? S bond cleavage and amide bond cleavage. ETD of the [M+3H]3+ ion generated rich sequence information, as did CID of the electron transfer products that did not fragment directly upon electron transfer. The electron transfer results suggest that both the S? S bond and an N? Cα bond can be cleaved following a single electron transfer reaction. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A series of new synthetic tetrabenzyl N-glucosidic, N-mannosidic and N-galactosidic isomers were investigated by fast atom bombardment (FAB)/mass-analysed ion kinetic energy (MIKE) spectrometry. The [M + H]+ ions were obtained with high abundance in the FAB spectra when using 3-nitrobenzyl alcohol as the matrix. The FAB/MIKE spectra provide characteristic daughter ions fragmented from selected molecular parent ions, allowing these isomers to be differentiated. In addition, an interesting rearrangement was found from the MIKE spectra, indicating that the benzyl (Bzl) group on the sugar ring is rearranged on to the N atom of the base (R) group to form [R + Bzl + H]+ and [R+ 2Bzl]+ ions.  相似文献   

15.
《Tetrahedron》1987,43(15):3413-3420
Stereospecific ion-molecule reactions of chiral reagents such as amino-alcohol with Mr,s,r and Ms,r,s enantiomeric alcohols (both menthols with R- and S-hydroxylic groups, respectively) yield both diastereomeric (Mr,r,s + AsH - H2O)+ and (Ms,r,s + AsH - H2O)+ ions. This specific gas phase synthesis combined with Mass Spectrometry/Mass Spectrometry analysis was applied to differentiate enantiomeric alcohols. Indeed,respective MIKE/CID spectra present differences in the daughter ion abundances which are useful for distinguishing between the initial alcohol configurations.  相似文献   

16.
Positive-ion fast atom bombardment mass spectrometry appears to be a useful method for the differentiation of anomeric C-glycosides. The mass-analysed ion kinetic energy (MIKE) and collision-activated dissociation (CAD) MIKE spectra of selected positive ions can be used as fingerprints of the α- or β-anomers. The main fragmentation routes and particularly the formation of the [M ? H]+ ion and the [M + H ? PhCH2OH]+ ion were traced for each anomer.  相似文献   

17.
The elimination of water from metastable molecular ions of epimeric hydroxy steroids of the Δ4-3-keto series containing a hydroxyl group in the conformationally rigid rings C and D has been studied. The measurement of translational energy released during the loss of water and collision-induced decomposition (CID) mass-analysed ion kinetic energy (MIKE) spectrometry were the techniques used. It was found that it is possible to determine the configuration of the hydroxy steroids of this series on the basis of the CID MIKE spectra of [M ? H2O] ions formed by dehydration of metastable molecular ions in the first field-free region of a reversed geometry double-focusing mass spectrometer.  相似文献   

18.
曾阔  曹泽星 《中国化学》2006,24(3):293-298
Density functional theory and ab initio calculations have been used to determine structures and stabilities of the protonated aromatics species AH^+ and AH2^2+ (A=pyrrole, furan). Possible mechanisms and relative energetics for protonation of pyrrole and furan by H3O^+ and AH^+ in the gas phase have been explored. Calculations show that the Cα-protonated species was the most stable structure for AH^+, and the protonated AH^+ might accommodate the second proton to yield AH2^2+ if the free proton was available. The gas-phase H3O^+ could protonate pyrrole and furan with significant exothermiCity and almost without barrier. The proton transfer from AH4^+ to pyrrole and furan has a barrier ranging from 33.5 to 39.3 kJ/mol in the gas phase.  相似文献   

19.
Fast atom bombardment (FAB), FAB mass-analysed ion kinetic energy (FAB MIKE) and collision-activated dissociation (FAB CAD-MIKE) mass spectra were obtained for two series of unsaturated anomeric aryl C-glycosides. These tandem mass spectrometric techniques allowed the differentiation of the anomers by analysing either the [M + H]+ ion or the [M + met]+ ion (met=Li, Na).  相似文献   

20.
Chemical ionization of two 1,4-dihydropyridines, lacidipine and its Z-isomer, and their corresponding pyridines in three different reagent gases and the collision-induced dissociation (CID) of their respective mass-selected protonated molecular ions in the collision energy range 10–200 eV were performed on a multiple quadrupole instrument. The weakness of the Breasted acid NH4+ as a protonating agent is clearly manifested in one of the ammonia positive-ion chemical ionization (CI+) mass spectra which displays the addition ion, [M + NH4]+, as the favoured reaction channel. The stereochemistry of the precursor molecules, the exothermicity of the protonation process and the threshold of certain dissociation channels as a function of the collision energy are among the arguments invoked to explain some of the observed differences between the CI+ mass spectra and the CID data of the different isomers investigated. In an attempt to present a more comprehensive study, some high-performance liquid chromatographic retention times and resolutions are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号