首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature m(T) and time m(t) dependences of the magnetic moment of GaMnSb thin films with MnSb clusters have been measured. The m(t) dependences are straightened in semilogarithmic coordinates m(lnt). The temperature dependences of magnetic viscosity S(T) corresponding to the slope of straight lines m(lnt) have been studied. It have been demonstrated that the behavior of dependences S(T) is governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters. It have been found that the behavior of dependences m(T) measured after the films were cooled in zero magnetic field and in magnetic field H = 10 kOe is also governed by the lognormal distribution of the magnetic anisotropy energy of MnSb clusters.  相似文献   

2.
The penetration of a magnetic flux into a type-II high-T c superconductor occupying the half-space x > 0 is considered. At the superconductor surface, the magnetic field amplitude increases in accordance with the law b(0, t) = b 0(1 + t)m (in dimensionless coordinates), where m > 0. The velocity of penetration of vortices is determined in the regime of thermally activated magnetic flux flow: v = v 0exp?ub;?(U 0/T )(1-b?b/?x)?ub;, where U 0 is the effective pinning energy and T is the thermal energy of excited vortex filaments (or their bundles). magnetic flux “Giant” creep (for which U 0/T? 1) is considered. The model Navier-Stokes equation is derived with nonlinear “viscosity” vU 0/T and convection velocity v f ∝ (1 ? U 0/T). It is shown that motion of vortices is of the diffusion type for j → 0 (j is the current density). For finite current densities 0 < j < j c, magnetic flux convection takes place, leading to an increase in the amplitude and depth of penetration of the magnetic field into the superconductor. It is shown that the solution to the model equation is finite at each instant (i.e., the magnetic flux penetrates to a finite depth). The penetration depth x eff A (t) ∝ (1 + t)(1 + m/2)/2 of the magnetic field in the superconductor and the velocity of the wavefront, which increases linearly in exponent m, exponentially in temperature T, and decreases upon an increase in the effective pinning barrier, are determined. A distinguishing feature of the solutions is their self-similarity; i.e., dissipative magnetic structures emerging in the case of giant creep are invariant to transformations b(x, t) = βm b(t/β, x(1 + m/2)/2), where β > 0.  相似文献   

3.
Exact solution for the electromagnetic field densities E and H of a dipole of uniformly accelerated point-charges with identical masses is discussed. It is shown that, for any fixed time t and a large distance R between the center of the dipole and the fieldpoint, |E| ~ R ?4, |H| ~ R ?5, while for large c|t| ~ R, |E| ~ |H| ~1/R as in spherical electromagnetic waves. Nevertheless, any irreversible radiation of electromagnetic waves is absent since the wave zone does not exist.  相似文献   

4.
The current-voltage characteristics of Cu-K0.3MoO3 point contacts between a metal and a semiconductor with a charge density wave (CDW) are studied for various diameters of the contacts in a wide range of temperatures T and voltages V. In the interval 80 K ? T ? 150 K, the current-voltage characteristics are correctly described in the framework of a semiconductor model: screening of an external electric field causes CDW deformation, shifts the chemical potential of quasiparticles, and changes the point contact resistance. It is shown that the chemical potential is above the middle of the Peierls gap in equilibrium and approaches the middle upon an increase in temperature. The current-voltage characteristics of point contacts with a diameter d ? 100 Å exhibit a sharp decrease in resistance for |V| > V t , which is associated with the beginning of local CDW sliding within the contact region. The V t (d, T) dependence can be explained by the size effect in the CDW phase slip.  相似文献   

5.
The problem of magnetic field penetration into the half-space is considered in parallel geometry in an external magnetic field increasing with time in accordance with the law B(0, t, τ0 = B c 1 (1 + t0) m , m ≥ 0, t ≥ 0 (τ 0 is the time of magnetic flux redistribution and B c 1 is the lower critical field). It is assumed that the flow of vortices is thermally activated in the “giant” creep mode (i.e., for weak pinning creep and high temperatures). A model equation is derived for describing the magnetic flux evolution. Analytic formulas are obtained for the depth and velocity of magnetic field penetration. It is shown that the giant creep regime is stable for 0 ≤ m ≤ 1/2.  相似文献   

6.
This paper investigates the influence of the spin squeezing parameter γ, the external magnetic field B and the temperature T on the concurrence (C), the quantum discord (QD), and the geometric quantum discord (GQD) in the two-qubit two-axis spin squeezing model in thermal equilibrium under an external magnetic field. The results show that the spin squeezing parameter γ has a positive effect on all three correlations. When the system is in the ground state, the external magnetic field B has a weakening effect on the three types of quantum correlations. Particularly, the spin squeezing parameter can be used to alleviate the destructive effect of the magnetic field on the geometric quantum discord. At a relatively high temperature, the externally applied magnetic field B helps enhance the quantum discord (QD). Further, the quantum discord is more robust than concurrence, and thus is more suitable for use as a quantum resource in information processing.  相似文献   

7.
R. O. Zaitsev 《JETP Letters》2008,88(11):734-739
The properties of the electron system with the strongest electron-electron coupling are studied. The kinetic equation in the Keldysh-Mills representation has been obtained. A new term has been discovered in the collision integral; this term is due to the relaxation of end multipliers and vanishes in the low-temperature limit as T 2/|t|, where |t| is the quantity on the order of the nearest-neighbor hopping integral and T is the temperature. The speed of sound has been calculated and the temperature behavior of the kinetic coefficients has been estimated.  相似文献   

8.
We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product of|r|~(-(d-2+η))and a finite-size scaling function of the variables r/L and tL~(1/ν),where t=(T-T_c)/T_c,ηis the critical exponent of correlation function,andνis the critical exponent of correlation length.The correlation function only has a sigificant directional dependence when|r|is compariable to L.We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations.We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponentη.  相似文献   

9.
Exploiting the thermo entangled state approach, we successfully solve the master equation for describing the single-mode cavity driven by an oscillating external field in the heat reservoir and then get the analytical time-evolution rule for the density operator in the infinitive Kraus operator-sum representation. It is worth noting that the Kraus operator M l, m is proved to be a trace-preserving quantum operation. As an application, the time-evolution for an initial coherent state ρ |β = |β〉〈β| in such an environment is investigated, which shows that the initial coherent state decays to a new mixed state as a result of thermal noise, however the coherence can still be reserved for amplitude damping.  相似文献   

10.
Starting from an essentially commutative exponential map E(B|I) for generic tensor-valued 2-forms B, which were introduced in [10] as a direct generalization of the ordinary noncommutative P exponent for 1 forms with values in matrices (i.e., in tensors of rank 2), we suggest a nontrivial but multiparametric exponential E(B|I|tγ), which can serve as an interesting multidirectional evolution operator in the case of higher ranks. To emphasize the most important aspects of the article, the construction is restricted to the backgrounds I ijk , which are associated with the structure constants of the commutative associative algebras, which make it insensitive to the topology of the 2D surface. Boundary effects are also eliminated (straightforward generalization is needed to incorporate them).  相似文献   

11.
For a 2D electron system in silicon, the temperature dependence of the Hall resistance ρxy(T) is measured in a weak magnetic field in the range of temperatures (1–35 K) and carrier concentrations n where the diagonal resistance component exhibits a metallic-type behavior. The temperature dependences ρxy(T) obtained for different n values are nonmonotonic and have a maximum at Tmax ~ 0.16TF. At lower temperatures T < Tmax, the change δρxy(T) in the Hall resistance noticeably exceeds the interaction quantum correction and qualitatively agrees with the semiclassical model, where only the broadening of the Fermi distribution is taken into account. At higher temperatures T > Tmax, the dependence ρxy(T) can be qualitatively explained by both the temperature dependence of the scattering time and the thermal activation of carriers from the band of localized states.  相似文献   

12.
Experiments with the tetragonal antiferromagnet Nd2CuO4 in the temperature range 1.5 K < T < T N = 245 K show that the magnetic moments of Cu2+ possess an exchange-noncollinear magnetic structure of the “square” type, which has the form of an exchange doublet whose components exhibit different chiralities (Γ4 and Γ5 phases). Between these phases, consecutive phase transitions Γ4 ? Γ5 ? Γ4 with a change in chirality take place at temperatures T1 = 30 K and T2 = 70 K. The electron and nuclear magnetic resonances (natural frequencies and susceptibilities) associated with excitation of magnons (due to the magnetoelectric and antiferroelectric interactions) by an ac electric field E(t), as well as a variable magnetic field H(t) applied in the case of a constant electric field E0, are calculated. It is predicted that nuclear magnetic resonance is excited by an ac electric field at frequencies determined by hyperfine fields of the sublattices. The change in the resonance frequencies upon the above chiral phase transitions are analyzed (being first-order phase transitions, these transitions possess a number of features associated with the chirality of the magnetic structures).  相似文献   

13.
The mechanism of excitation and propagation of spin waves in Ge: Mn thin films with different nominal manganese concentrations (2, 4, and 8 at % Mn) with percolation magnetic ordering is explored. Concentration dependencies of Curie temperature TC(n) and spin wave rigidity D(n) are determined, which enables to find the index of correlation distance. An exotic percolation magnetic state of samples of Ge: Mn thin films is confirmed by rectifying experimental dependences D(n) and D/TC(n) in coordinates accepted in the percolation theory.  相似文献   

14.
We consider two-dimensional Schrödinger operators H(B, V) given by Eq. (1.1) below. We prove that, under certain regularity and decay assumptions on B and V, the character of the expansion for the resolvent (H(B, V) ? λ)?1 as λ → 0 is determined by the flux of the magnetic field B through \({\mathbb{R}^2}\) . Subsequently, we derive the leading term of the asymptotic expansion of the unitary group e ?i t H(B, V) as t → ∞ and show how the magnetic field improves its decay in t with respect to the decay of the unitary group e ?i t H(0, V).  相似文献   

15.
A 16-channel transceiver radiofrequency (RF) array using Helmholtz coils was designed to improve the RF transmission |B 1 + |-field homogeneity for human brain magnetic resonance imaging (MRI) at 7 T. A numerical simulation of the proposed Helmholtz transceiver array was performed using the finite-difference time-domain method—the subset of the finite-element method simulation. The simulation results of proposed 16-channel Helmholtz transceiver array were compared with the generally used rectangular transceiver array in term of their |B 1 + |-field and specific absorption rate (SAR). The simulation of each single element in 16-channel Helmholtz and rectangular transceiver arrays was compared using water phantom in term of their magnetic flux |B 1| homogeneity for the full width at half maximum. From the simulation results, the proposed 16-channel Helmholtz transceiver array configuration offers superior |B 1 + |-field homogeneity and low SAR at 7 T. These modifications to the coil geometries of the transceiver array coil could be applied to a 7-T MRI, and also extended to increase the homogenous coverage on |B 1 + |field with low SAR.  相似文献   

16.
The Influence of temperature in the range from 275 to 320 K on ESR spectra and magnetization m of ensembles of spherical gadolinium nanoparticles with the diameter from 89 to 18 nm was studied. The particles with d = 18 nm had a cubic face centered structure and no magnetic transition. At T > TC all particles were paramagnetic, and their g factors were g = 1.98 ± 0.02 irrespective of their size and structure. At T = TC the particles having 28 to 89 nm in size experienced a magnetic and orientation transition; at T < TC their m(H) dependences were described by the Langevin function, and the FMR lines broadened and shifted towards H = 0. FMR lines of the Gd particle ensembles showed a hysteresis behavior during magnetization reversal, which did not correlate with the coercivity of the particles. Dependences of the Gd nanoparticles FMR linewidth ΔH(T) changed proportionally to |TTC|.  相似文献   

17.
The behavior in a magnetic field of a highly correlated electron liquid approaching the fermion condensation quantum phase transition from the disordered phase is considered. We show that, at sufficiently high temperatures TT*(x), the effective mass starts to depend on T, M* ∝T?1/2. This T?1/2 dependence of the effective mass at elevated temperatures leads to the non-Fermi liquid behavior of the resistivity, σ(T) ∝ T and at higher temperatures σ(T) ∝ T3/2. The application of a magnetic field B restores the common T2 behavior of the resistivity. The effective mass depends on the magnetic field, M*(B) ∝ B?2/3, being approximately independent of the temperature at T≤T*(B) ∝ B4/3. At TT*(B), the T?1/2 dependence of the effective mass is reestablished. We demonstrate that this B-T phase diagram has a strong impact on the magnetoresistance (MR) of the highly correlated electron liquid. The MR as a function of the temperature exhibits a transition from negative values of MR at T→0 to positive values at TB4/3. Thus, at TT*(B), MR as a function of the temperature possesses a node at TB4/3.  相似文献   

18.
Considering two two-level atoms initially in Bell state, we send one atom into a vacuum cavity while leaving the other outside, and consider the motion of atom inside the cavity. Using quantum information entropy squeezing theory, the time evolution of the entropy squeezing factor of atom inside the cavity is discussed for two cases, i.e., before and after performing rotation operations and measuring atom outside, the influences of the field mode structure and atomic motions on the atomic entropy squeezing are evaluated. It is shown that atom inside the cavity has no entropy squeezing phenomenon before operating atom outside the cavity. However, the optimal entropy squeezing phenomenon of period T = 2π/p emerges and constant entropy squeezing phenomenon can occur by adjusting rotation operation to R(π/4), and setting the field mode structure parameter 0 < p < 50. In particular, if choosing p > 50, a sustained optimal entropy squeezing state (SOESS) can be generated. We also present the schematic circuit diagram of preparation of SOESS. Our proposal provides a possible way for the initial decoherent state recovering into sustained maximal coherent superposition state of single atom in the quantum noise environment.  相似文献   

19.
A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ(V g ) = (V g ?V g * (T))β with β = 4. The saturation of σ(T) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ(T, V g ) and makes it possible to determine the fraction of microcontacts x(V g , T) with conductances higher than σ. It is found that the dependence x(V g ) is nonlinear and the critical exponent in the formula σ ∝ ? (x - 1/2) t in the range 1.3 < t(T, V g ) < β.  相似文献   

20.
We show that the superconducting transition temperature T c (H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon of superconductivity induced by magnetic field is predicted: the superconducting transition temperature T c (H) is found to be nonzero in the range of magnetic fields 0 < H* ≤ HH c .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号