首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate what a snapshot of a quantum evolution--a quantum channel reflecting open system dynamics--reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of "Markovianity" is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.  相似文献   

2.
邢修三 《物理学报》2014,63(23):230201-230201
本文综述了作者的研究成果.近十年,作者将现有静态统计信息理论拓展至动态过程,建立了以表述动态信息演化规律的动态信息演化方程为核心的动态统计信息理论.基于服从随机性规律的动力学系统(如随机动力学系统和非平衡态统计物理系统)与遵守确定性规律的动力学系统(如电动力学系统)的态变量概率密度演化方程都可看成是其信息符号演化方程,推导出了动态信息(熵)演化方程.它们表明:对于服从随机性规律的动力学系统,动态信息密度随时间的变化率是由其在系统内部的态变量空间和传递过程的坐标空间的漂移、扩散和耗损三者引起的,而动态信息熵密度随时间的变化率则是由其在系统内部的态变量空间和传递过程的坐标空间的漂移、扩散和产生三者引起的.对于遵守确定性规律的动力学系统,动态信息(熵)演化方程与前者的相比,除动态信息(熵)密度在系统内部的态变量空间仅有漂移外,其余皆相同.信息和熵已与系统的状态和变化规律结合在一起,信息扩散和信息耗损同时存在.当空间噪声可略去时,将会出现信息波.若仅研究系统内部的信息变化,动态信息演化方程就约化为与表述上述动力学系统变化规律的动力学方程相对应的信息方程,它既可看成是表述动力学系统动态信息的演化规律,亦可看成是动力学系统的变化规律都可由信息方程表述.进而给出了漂移和扩散信息流公式、信息耗散率公式和信息熵产生率公式及动力学系统退化和进化的统一信息表述公式.得到了反映信息在传递过程中耗散特性的动态互信息公式和动态信道容量公式,它们在信道长度和信号传递速度之比趋于零的极限情况下变为现有的静态互信息公式和静态信道容量公式.所有这些新的理论公式和结果都是从动态信息演化方程统一推导出的.  相似文献   

3.
刘小娟  周并举  刘明伟  李寿存 《中国物理》2007,16(12):3685-3691
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter $p$ on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.  相似文献   

4.
刘王云  安毓英  杨志勇 《中国物理》2007,16(12):3704-3709
The properties of the field quantum entropy evolution in a system of a single-mode squeezed coherent state field interacting with a two-level atom is studied by utilizing the complete quantum theory, and we focus our attention on the discussion of the influences of field squeezing parameter $\gamma $, atomic distribution angle $\theta $ and coupling strength $g$ between the field and the atom on the properties of the evolution of field quantum entropy. The results obtained from numerical calculation indicate that the amplitude of oscillation of field quantum entropy evolution decreases with the increasing of squeezing parameter $\gamma $, and that both atomic distribution angle $\theta $ and coupling strength $g$ between the field and the atom can influence the periodicity of field quantum entropy evolution.  相似文献   

5.
贺志  李莉  姚春梅  李艳 《物理学报》2015,64(14):140302-140302
从量子相干性包括l1 norm相干性和量子相对熵相干性的角度建立了判定开放量子系统中非马尔可夫过程的方法, 并给出了相应的判别条件. 作为它们的具体应用, 研究了一个两能级系统分别经历相位衰减通道、 随机幺正通道和振幅耗散通道作用时对应的非马尔可夫过程发生必须满足的条件. 对于三种通道模型, 得到了l1 norm相干性对系统任意态非马尔可夫过程发生的判别条件, 并发现在相位衰减通道和振幅耗散通道中其非马尔可夫过程发生 的条件与用其他方式如信息回流、可分性和量子互熵给出的条件是相同的, 而在随机幺正通道中给出了一个新的且不完全等价于基于信息回流和可分性对应的条件. 至于量子相对熵相干性, 在相位衰减通道中得到了对系统任意态的非马尔可夫过程发生的具体条件, 并发现该条件也等同于基于信息回流、可分性和量子互熵给出的条件. 而在随机幺正通道和振幅耗散通道中得到了系统最大相干态对应的非马尔可夫过程发生的条件.  相似文献   

6.
One of most important issues in quantum information theory concerns transmission of information through noisy quantum channels. We discuss a few channel characteristics expressed by means of generalized entropies. Such characteristics can often be treated in line with more usual treatment based on the von Neumann entropies. For any channel, we show that the q-average output entropy of degree q ≥ 1 is bounded from above by the q-entropy of the input density matrix. The concavity properties of the (q, s)-entropy exchange are considered. Fano type quantum bounds on the (q, s)-entropy exchange are derived. We also give upper bounds on the map (q, s)-entropies in terms of the output entropy, corresponding to the completely mixed input.  相似文献   

7.
The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences of this result in the context of quantum information theory. First, we show that the information that leaks out to spacelike separated regions is negligible and that there is a finite speed at which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used to prove lower bounds on the time it takes to convert states without topological quantum order to states with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales like the boundary of that block.  相似文献   

8.
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel capacities reflecting the dynamic dissipation characteristics in the transmission processes, which change into their maximum—the present static mutual information and static channel capacity under the limit case where the proportion of channel length to information transmission rate approaches to zero. All these unified and rigorous theoretical formulas and results are derived from the evolution equations of dynamic information and dynamic entropy without adding any extra assumption. In this review, we give an overview on the above main ideas, methods and results, and discuss the similarity and difference between two kinds of dynamic statistical information theories.  相似文献   

9.
Quantum entanglement in a two—dimensional ion trap   总被引:1,自引:0,他引:1       下载免费PDF全文
王成志  方卯发 《中国物理》2003,12(3):287-293
In this paper,we investigate the quantum entanglement in a two-dimensional ion trap system.we discuss the quantum entanglement between the ion and phonons by using reduced entropy,and that between two degrees of freedom of the vibrational motion along x and y directions by using quantum relative entropy.We discuss also the influence of initial state of the system on the quantum entanglement and the relation between two entanglements in the trapped ion system.  相似文献   

10.
陈小余 《中国物理 B》2010,19(4):40308-040308
In quantum information theory, von Neumann entropy plays an important role; it is related to quantum channel capacities. Only for a few states can one obtain their entropies. In a continuous variable system, numeric evaluation of entropy is not easy due to infinite dimensions. We develop the perturbation theory for systematically calculating von Neumann entropy of a non-degenerate system as well as a degenerate system.  相似文献   

11.
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.  相似文献   

12.
Optimising open quantum system evolution is an important step on the way to achieving quantum computing and quantum thermodynamic tasks. In this article, we approach optimisation via variational principles and derive an open quantum system variational algorithm explicitly for Lindblad evolution in Liouville space. As an example of such control over open system evolution, we control the thermalisation of a qubit attached to a thermal Lindbladian bath with a damping rate γ. Since thermalisation is an asymptotic process and the variational algorithm we consider is for fixed time, we present a way to discuss the potential speedup of thermalisation that can be expected from such variational algorithms.  相似文献   

13.
We explore the entropy uncertainty for qutrit system under non-Markov noisy environment and discuss the effects of the quantum memory system and the spontaneously generated interference(SGI)on the entropy uncertainty in detail.The results show that,the entropy uncertainty can be reduced by using the methods of quantum memory system and adjusting of SGI.Particularly,the entropy uncertainty can be decreased obviously when both the quantum memory system and the SGI are simultaneously applied.  相似文献   

14.
The interaction between system and environment is a fundamental concept in the theory of open quantum systems. As a result of the interaction, an amount of correlation (both classical and quantum) emerges between the system and the environment. In this work, we recall the quantity that will be very useful to describe the emergence of the correlation between the system and the environment, namely, the total entropy production. Appearance of total entropy production is due to the entanglement production between the system and the environment. In this work, we discuss about the role of the total entropy production for detecting the non-Markovianity. By utilizing the relation between the total entropy production and total correlation between subsystems, one can see a temporary decrease of total entropy production is a signature of non-Markovianity. We apply our criterion for the special case, where the composite system has initial correlation with environment.  相似文献   

15.
In this paper, we study coherence-induced state ordering with Tsallis relative entropy of coherence, relative entropy of coherence and l1 norm of coherence, and give the sufficient conditions of the same state order induced by above coherence measures. First, we show that the above measures give the same ordering for single-qubit states in some special cases. Second, we consider some special states in a d-dimensional quantum system. We show that the above measures generate the same ordering for these special states. Finally, we discuss dynamics of coherence-induced state ordering under Markovian channels. We find amplitude damping channel changes the coherence-induced ordering even though for single-qubit states with fixed mixedness.  相似文献   

16.
In this paper, we study coherence-induced state ordering with Tsallis relative entropy of coherence, relative entropy of coherence and l1 norm of coherence, and give the sufficient conditions of the same state order induced by above coherence measures. First, we show that the above measures give the same ordering for single-qubit states in some special cases. Second, we consider some special states in a d-dimensional quantum system. We show that the above measures generate the same ordering for these special states. Finally, we discuss dynamics of coherence-induced state ordering under Markovian channels. We find amplitude damping channel changes the coherence-induced ordering even though for single-qubit states with fixed mixedness.  相似文献   

17.
宋旭东  董世海  张宇 《中国物理 B》2016,25(5):50302-050302
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.  相似文献   

18.
In this work, we study two different approaches to defining the entropy of a quantum channel. One of these is based on the von Neumann entropy of the corresponding Choi–Jamiołkowski state. The second one is based on the relative entropy of the output of the extended channel relative to the output of the extended completely depolarizing channel. This entropy then needs to be optimized over all possible input states. Our results first show that the former entropy provides an upper bound on the latter. Next, we show that for unital qubit channels, this bound is saturated. Finally, we conjecture and provide numerical intuitions that the bound can also be saturated for random channels as their dimension tends to infinity.  相似文献   

19.
In this paper, we study the bulk entanglement entropy evolution in conical BTZ black bole background using the heat kernel method. This is motivated by exploring the new examples where the quantum correction of the entanglement entropy gives the leading contribution. We find that in the large black hole limit the bulk entanglement entropy decreases under the double‐trace deformation which is consistent with the holographic c theorem and in the small black hole limit the bulk entanglement entropy increases under the deformation. We also discuss the minimal area correction.  相似文献   

20.
Non-Markovian dynamics detection is one of the most popular subjects in quantum information science. In this paper, a linear -entropy-based non-Markovianity witness scheme is constructed. The positive definiteness of the Choi state will be broken in non-Markovian evolution, which can be witnessed by its linear entropy. Thus, the linear entropy of the Choi state can be used to witness non-Markovian dynamics. The effectiveness of the proposed method is verified using the pure dephasing channel as an example. Finally, it is shown that this method can be extended to the one based on Rényi entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号