首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In this paper we formualte a master equation approach describing a D+T thermonuclear plasma in a lumped phase space. From the first moments of this master equation and performing the pass to the continuous limit the evolution equations for the expected phase space ion densities emerge. Also we have obtained the evolution equations of the equal time correlation and covariance functions. Finally we have deduced the hydrodynamic equations that arise from a master equation approach.  相似文献   

2.
For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.  相似文献   

3.
In this paper, we analyze the classical capacity of the generalized Pauli channels generated via memory kernel master equations. For suitable engineering of the kernel parameters, evolution with non-local noise effects can produce dynamical maps with a higher capacity than a purely Markovian evolution. We provide instructive examples for qubit and qutrit evolution. Interestingly, similar behavior is not observed when analyzing time-local master equations.  相似文献   

4.
Recently increasing interests are attracted in the physics of controlled arrays of nonlinear cavity resonators because of the rapid experimental progress achieved in cavity and circuit quantum electrodynamics (QED). For a driven-dissipative two-dimentional planar C-QED array, standard Markov master equation is generally used to study the dynamics of this system. However, when in the case that the on-site photon-photon interaction enters strong correlation regime, standard Markov master equation may lead to incorrect results. In this paper we study the non-equilibrium dynamics of a two-dimentional C-QED array, which is homogeneously pumped by an external pulse, at the same time dissipation exits. We study the evolution of the average photon number of a single cavity by deriving a modified master equation to. In comparison with the standard master equation, the numerical result obtained by our newly derived master equation shows significant difference for the non-equilibrium dynamics of the system.  相似文献   

5.
We show that a dissipative current component is present in the dynamics generated by a Liouville-master equation, in addition to the usual component associated with Hamiltonian evolution. The dissipative component originates from coarse graining in time, implicit in a master equation, and needs to be included to preserve current continuity. We derive an explicit expression for the dissipative current in the context of the Markov approximation. Finally, we illustrate our approach with a simple numerical example, in which a quantum particle is coupled to a harmonic phonon bath and dissipation is described by the Pauli master equation.  相似文献   

6.
We investigate what a snapshot of a quantum evolution--a quantum channel reflecting open system dynamics--reveals about the underlying continuous time evolution. Remarkably, from such a snapshot, and without imposing additional assumptions, it can be decided whether or not a channel is consistent with a time (in)dependent Markovian evolution, for which we provide computable necessary and sufficient criteria. Based on these, a computable measure of "Markovianity" is introduced. We discuss how the consistency with Markovian dynamics can be checked in quantum process tomography. The results also clarify the geometry of the set of quantum channels with respect to being solutions of time (in)dependent master equations.  相似文献   

7.

In this study we aim to solve the amplitude damping model master equation for a driven damped harmonic oscillator under the action of a classical force with arbitrary time dependence. We use thermo entangled state representation for the density operator, but to avoid a complicated disentangling process in such solutions, we introduce a simple and concise method to extract the density operator from its thermo entangled state representation. Whereas time evolution is a classical process, this method can be effectively used.

  相似文献   

8.
We study the dynamics of a Brownian quantum particle hopping on an infinite lattice with a spin degree of freedom. This particle is coupled to free boson gases via a translation-invariant Hamiltonian which is linear in the creation and annihilation operators of the bosons. We derive the time evolution of the reduced density matrix of the particle in the van Hove limit in which we also rescale the hopping rate. This corresponds to a situation in which both the system-bath interactions and the hopping between neighboring sites are small and they are effective on the same time scale. The reduced evolution is given by a translation-invariant Lindblad master equation which is derived explicitly.  相似文献   

9.
For the first time, we obtain the entropy variation law in a laser process after finding the Kraus operator of the master equation describing the laser process with the use of the entangled state representation. The behavior of entropy is determined by the competition of the gain and damping in the laser process. The evolution formula for the number of photons is also obtained.  相似文献   

10.
周军  袁好  宋军 《物理学报》2012,61(3):30302-030302
利用热纠缠态的性质,对具有代表性的相位扩散主方程进行求解,得到关于密度算符的算符和表示形式,分析不同初始态下的密度算符的时间演化结果,发现在相位扩散通道下当初始态为粒子数态或热态时密度算符保持恒定,而当初始态为相干态时系统在发生相扩散的同时始终保持相干态特性不变.  相似文献   

11.
孟祥国  王继锁  梁宝龙 《中国物理 B》2013,22(3):30307-030307
Using the thermal entangled state representation, we solve the master equation of a diffusive anharmonic oscillator (AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation. We present a new evolution formula of the Wigner function (WF) for any initial state of the diffusive AHO by converting the calculation of the WF to an overlap between two pure states in an enlarged Fock space. It is found that this formula brings us much convenience to investigate the WF's evolution of any known initial state. As applications, this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of the diffusive AHO.  相似文献   

12.
Using thermal entangled state representation,we solve the master equation of a diffusive anharmonic oscillator(AHO) to obtain the exact time evolution formula for the density operator in the infinitive operator-sum representation.We present a new evolution formula of the Wigner function(WF) for any initial state of the diffusive AHO by converting the WF calculation into an overlap between two pure states in an enlarged Fock space.It is found that this formula is very convenient in investigating the WF’s evolution of any known initial state.As applications,this formula is used to obtain the evolution of the WF for a coherent state and the evolution of the photon-number distribution of diffusive AHOs.  相似文献   

13.
The paper reexamines the treatment of irreversible quantum systems by master equations. Shortcomings of the conventional theory of quantum Markov processes pointed out by Talkner are analyzed. It is shown that a frequently used quantum regression hypothesis is not correct, in general. A new generalized master equation determining the relaxation to equilibrium is derived by means of time-dependent projection operator techniques. It is shown that this master equation also determines the time evolution of equilibrium correlations and response functions. The Markovian approximation is discussed, and a new type of Markovian limit, the Brownian motion limit, is introduced besides the weak coupling limit. The shortcomings of the conventional approach are resolved by deriving new formulae for the time evolution of the correlation and response functions of a quantum Markov process. The symmetries of the process are emphasized, and it is shown how the fluctuation-dissipation theorem and the detailed balance symmetry emerge from the master equation approach.  相似文献   

14.
In this paper, we investigate the diffusional coagulation of colloidal superparamagnetic (SP) latex particles that are under the influence of an external magnetic field. The cluster size distributions (CSDs) that evolve with time were determined using an optical set-up that permits the direct visualization of particle clusters. Following the dynamic scaling analysis of van Dongen and Ernst (Phys. Rev. Lett. 54 (1985) 1396), we find that the CSDs all collapse onto a master curve when properly scaled. The bell-shape of this master curve indicates that large clusters preferentially scavenge small clusters in our system. From the time evolution of the average cluster size we infer that the reactivity between large clusters diminishes with increasing cluster size. These results are consistent with a simple mathematical formulation of the coagulation rate constant, or kernel, for the Brownian coagulation of magnetic particles. Moreover, our results support a growing body of evidence that the dynamic scaling theory developed by van Dongen and Ernst is a useful framework with which to study the microscale processes governing particle coagulation.  相似文献   

15.
We derive a master equation that allows us to study non-equilibrium dynamics of a quantum antiferromagnet. By resorting to spin-wave theory, we obtain a closed analytic form for the magnon decay rates. These turn out to be closely related to form factors, which are experimentally accessible by means of neutron and Raman scattering. Furthermore, we compute the time evolution of the staggered magnetization showing that, for moderate temperatures, the magnetic order is not spoiled even if the coupling is fully isotropic.  相似文献   

16.
In nanomechanical QED system,consisting of a charge qubit and a nanomechanical resonator with intrinsic nonlinearity,we study the temporal behavior of Rabi oscillation in the nonlinear Jaynes-Cummings model.Using microscopic master equation approach,we solve time evolution of the density operator describing this model.Also,the probability of excited state of charge qubit is calculated.These analytic calculations show how nonlinearity parameter and decay rates of two different excited states of the qubit-resonator system affect time-oscillating and decaying of Rabi oscillation.  相似文献   

17.
We derive the general form of a master equation describing the reduced time evolution of a sequence of subsystems "propagating" in an environment which can be described as a sequence of subenvironments. The interaction between subsystems and subenvironments is described in terms of a collision model, with the irreversible dynamics of the subenvironments between collisions explicitly taken into account. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Lindblad superoperator contains pairwise terms describing cross correlation between the different subsystems. Such a model can describe a broad range of physical situations, ranging from quantum channels with memory to photon propagation in concatenated quantum optical systems.  相似文献   

18.
19.
任益充  范洪义 《物理学报》2016,65(11):110301-110301
采用Ket-Bra纠缠态方法求解主方程, 研究了具有含时外场情况下单qubit和无相互作用的两qubit与热库耦合时的量子退相干、退纠缠现象. 对两qubit情形, 我们以共生纠缠度(concurrence)作为纠缠度量, 研究了其纠缠动力学演化过程. 研究表明即使系统内部不存在直接、间接的相互作用, 施加含时外场也能引起纠缠的震荡和复活, 这为通过施加控制外场抑制开放系统的退相干、退纠缠过程提供了理论支持.  相似文献   

20.
In this paper we propose an Ising model on an infinite ladder lattice, which is made of two infinite Ising spin chains with interactions. It is essentially a quasi-one-dimessional Ising model because the length of the ladder lattice is infinite, while its width is finite. We investigate the phase transition and dynamic behavior of Ising model on this quasi-one-dimessional system. We use the generalized transfer matrix method to investigate the phase transition of the system. It is found that there is no nonzero temperature phase transition in this system. At the same time, we are interested in Glauber dynamics. Based on that, we obtain the time evolution of the local spin magnetization by exactly solving a set of master equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号