首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
申义庆  高智 《力学学报》2003,35(2):224-229
在基本无振荡格式的构造中,将通常的对流通量f的逼近方式推广到对通量导数的逼近,这一构造方法可以有效地应用到非均匀或非结构网格。直接基于非均匀网格上,构造了一个二阶的基本无振荡(ENO)差分格式,该格式具有形式简单,对网格的划分灵活,对传统格式相比不增加计算量等优点,几个数值算例证明了格式的有效性。  相似文献   

2.
提出一种设置运动边界条件的方法,研究边界附近流体粒子积分截断和非物理穿透边界的问题。边界外的虚粒子在每个时间步由边界附近流体粒子对称生成,赋予相应的物理量,并在虚粒子中引入排斥力,利用拉格朗日形式的N‐S方程自编SPH程序,参考一维激波管的精确解验证边界方法的适用性,研究运动边界条件在计算模型中应用。激波管的模拟结果与精确解基本一致,且在运动边界模型中也计算获得合理的结果。文中提出的运动边界条件,避免了边界附近流体粒子积分截断问题,阻止流体粒子在边界处发生非物理穿透的现象。  相似文献   

3.
光滑质点流体动力学方法(SPH;Smoothed Particle Hydrodynamics)是一种新的纯Lagrangian方法,由于该方法在计算空间导数的时候不需要借助于网格,从而避免了Lagrangian网格在处理大变形问题时的缠结和扭曲问题.传统上,SPH方法主要用来模拟天体问题以及流体或固体的动力问题.动力松弛法(DR;Dynamic Relax-ation)通过采用虚拟质量和虚拟阻尼将一个静力问题转化为动力问题,最早用于解决潮汐问题.DR方法从数学的角度来说是一种求解线性方程组的方法,并不涉及连续结构的离散.所以采用网格方法离散时,DR方法同样受到网格变形导致计算精度下降的困扰.论文采用SPH离散连续体,然后用DR方法求解结构的平衡状态,并根据SPH的特点,提出一种加速收敛的新型计算方法.  相似文献   

4.
孙泉华  韩肇元 《实验力学》1997,12(4):539-543
本文在自行研制的无膜激波管中,实验研究了不同快速卸压装置对该激波管运行特性的影响。通过控制高压段充气压力和测量压力波形,得到了高低压段压比和激波马赫数的关系曲线以及在测压点处形成激波所需的最低压比。实验结果表明排气快慢对激波形成距离和所形成激波的强度产生很大的影响。对不同装置产生的结果差异进行了一定的分析。  相似文献   

5.
基于流形覆盖思想的无网格方法的研究   总被引:20,自引:3,他引:17  
本语言基于流形思想,利用有限覆盖,单位分解等概念,引入建立在覆盖上的覆盖函数和具有紧支撑特性的单位分解函数,建立场逼近的近似表达,由弱形式的Galerkin变分得到数值分析模型,结合边界条件用于边值问题的求解,由此建立了一类新的无网格数值方法,论文采用这种方法分析了平面弹性问题,分析了体积闭锁现象,h、p型收敛性等,提出了一种选择覆盖大小的方案,且对狭长城采用了椭圆覆盖形式,取得了比较好的效果。  相似文献   

6.
光滑粒子动力学方法的发展与应用   总被引:5,自引:0,他引:5  
刘谋斌  宗智  常建忠 《力学进展》2011,41(2):217-234
光滑粒子动力学(smoothed particle hydrodynamics,SPH)是一种拉格朗日型无网格粒子方法,已经成功地应用到了工程和科学的众多领域.SPH使用粒子离散及代表所模拟的介质,并且基于粒子体系估算和近似介质运动的控制方程.本文分析和综述了SPH模拟方法的发展历程、数值方法与应用进展.介绍了SPH方法的基本思想;从连续性、边界处理、稳定性和计算效率4个方面阐述了SPH方法的研究现状;介绍了SPH方法近年来在可压缩流动、不可压缩流动以及弹塑性材料高速变形与失效方面的一些典型应用;并对SPH方法的发展与应用进行了预测与展望.   相似文献   

7.
多化学组份反应气体流动的Godunov格式   总被引:1,自引:0,他引:1  
本文将单介质气体流动的Goduoov方法推广到多化学组份气体流动的计算中,建立了多化学组份气体的间断分解公式以及任意四边形网格下的Godunov方法的差分格式,提出了处理自由边界的虚相法,应用第二类网格,计算了超音速射流及其冲击问题的几个算例,并且同实验结果进行了比较。  相似文献   

8.
基于有限体积水锤方程的Godunov格式离散   总被引:1,自引:0,他引:1  
基于有限体积法建立了管道瞬变流的离散格式,采用特征分解技术计算界面通量,并通过重构和通量限制建立二阶精度的TVD格式。此格式保证了质量和动量的守恒性,物理意义明确,计算速度快,适用范围广。通过Riemann问题算例、水锤实例和各种阀门组合情况下的管网水锤实例验证了格式具有高分辨率、无虚假振荡和对克朗数灵敏度低等优点。  相似文献   

9.
轴对称液体环的形成、变形和破碎的研究   总被引:4,自引:2,他引:2  
为了实现液体环的轴对称径向扩展运动,提出了一种新的实验方法及设备。这种新的实验设备是由垂直的无膜激波管和液体环发生器所组成,可以用来观察轴对称液体环的形成、变形和破碎过程。轴对称液体环抛撒过程的实验研究已在这种实验设备上完成,并得到了相应的一系列流场照片。对实验结果的分析表明,液体表面的不稳定性是造成液体环破碎的主要原因。  相似文献   

10.
在二维、三维非结构网榕上,针对间断Galerkin方法计算量大、收敛慢的缺点将p型多重网格方法应用于该方法求解跨音速Euler方程,提高计算效率。p型多重网格方法是通过对不同阶次多项式近似解进行递归迭代求解,来达到加速收敛。文中对高阶近似(p>0)使用显式格式,最低阶近似(p=0)采用隐式格式。NACA0012翼型和O...  相似文献   

11.
12.
王吉  王肖钧  卞梁 《爆炸与冲击》2007,27(6):522-528
扼要讨论了光滑粒子法的离散思想,充分利用光滑粒子法和有限元方法各自的优点,提出了一种初始时刻用有限元建模,计算过程中大变形单元自动转换为光滑粒子的耦合算法。高速碰撞的系列算例说明,耦合算法不但适宜于计算大变形冲击动力学问题,而且由于集两种方法的优点于一身,可以更高效地模拟一些高速碰撞问题,提高计算效率。  相似文献   

13.
In this article, an improved smoothed particle hydrodynamics (SPH) method is proposed to simulate the filling process with two inlets. Improvements are achieved by deriving a corrected kernel gradient of SPH and a density re-initialisation. In addition, a new treatment of solid wall boundaries is presented. Thus, the improved SPH method has higher accuracy and better stability, and conserves both linear and angular momentums. The validity of the new boundary treatment is shown by simulating the spin-down problem. The bench tests are also presented to demonstrate the performance of the improved SPH method. Then the filling process with a single inlet is simulated to show the ability to capture complex-free surface of the proposed method. Finally, the filling process with two inlets is numerically investigated. The numerical results show that the filling patterns are affected significantly by Reynolds number, aspect ratio of the container and the location of the inlets.  相似文献   

14.
The solution for the shallow water equations using smoothed particle hydrodynamics is attractive, being a mesh‐free, automatically adaptive method without special treatment for wet–dry interfaces. However, the relatively new method is limited by the variable kernel size or smoothing length being inversely proportional to water depth causing poor resolution at small depths. Boundary conditions at solid walls have also not been well resolved. To solve the resolution problem in small depths, a particle splitting procedure was developed (conveniently into seven particles), which conserves mass and momentum by varying the smoothing length, velocity and acceleration of each refined particle. This improves predictions in the shallowest depths where the error associated with splitting is reduced by one order of magnitude in comparison to other published works. To provide good shock capturing behaviour, particle interactions are treated as a Riemann problem with Monotone Upstream‐centred Scheme for Conservation Laws (MUSCL) reconstruction providing stability. For solid boundaries, the recent modified virtual boundary particle method was developed further to enable the zeroth moment to be accurately conserved where the smoothing length of particles is changing rapidly during particle splitting. The resulting method is applied to the one‐dimensional and the two‐dimensional axisymmetric wet‐bed dam break problems showing close agreement with analytical solutions, demonstrating the need for particle splitting. To demonstrate wetting and drying in a more complex case, the scheme is applied to oscillating water in a two‐dimensional parabolic basin and produces good agreement with the analytical solution. The method is finally applied to the European Concerted Action on DAm break Modelling dam‐break test case representative of realistic conditions and good predictions are made of experimental measurements with a 40% reduction in the computational time when particle splitting is employed. The overall method has thus become quite sophisticated but its generality and versatility will be attractive for various shallow water problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
An application of smoothed particle hydrodynamics (SPH) to simulation of soil–water interaction is presented. In this calculation, water is modeled as a viscous fluid with week compressibility and soil is modeled as an elastic–perfectly plastic material. The Mohr–Coulomb failure criterion is applied to describe the stress states of soil in the plastic flow regime. Dry soil is modeled by one-phase flow while saturated soil is modeled by separate water and soil phases. Interaction between soil and water is taken into account by means of pore water pressure and seepage force. Simulation tests of soil excavation by a water jet are calculated as a challenging example to verify the broad applicability of the SPH method. The excavations are carried out in two different soil models, one is dry soil and the other is fully saturated soil. Numerical results obtained in this paper have shown that the gross discontinuities of soil failure can be simulated without any difficulties. This supports the feasibility and attractiveness of this a new approach in geomechanics applications. Advantages of the method are robustness, conceptual simplicity and relative ease of incorporating new physics.  相似文献   

16.
An incompressible‐smoothed particle hydrodynamics (I‐SPH) formulation is presented to simulate impulsive waves generated by landslides. The governing equations, Navier–Stokes equations, are solved in a Lagrangian form using a two‐step fractional method. Landslides in this paper are simulated by a submerged mass sliding along an inclined plane. During sliding, both rigid and deformable landslides mass are considered. The present numerical method is examined for a rigid wedge sliding into water along an inclined plane. In addition solitary wave generated by a heavy box falling inside water, known as Scott Russell wave generator, which is an example for simulating falling rock avalanche into artificial and natural reservoirs, is simulated and compared with experimental results. The numerical model is also validated for gravel mass sliding along an inclined plane. The sliding mass approximately behaves like a non‐Newtonian fluid. A rheological model, implemented as a combination of the Bingham and the general Cross models, is utilized for simulation of the landslide behaviour. In order to match the experimental data with the computed wave profiles generated by deformable landslides, parameters of the rheological model are adjusted and the numerical model results effectively match the experimental results. The results prove the efficiency and applicability of the I‐SPH method for simulation of these kinds of complex free surface problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a two-fluid smoothed particle hydrodynamics (SPH) model, based on the mixture theory, is employed to investigate the complex interactions between the solid particles and the ambient water during the process of submerged granular column collapse. From the simulation, two regimes of the collapse, one being quick and the other being slow, are identified and the reasons of formation are analyzed. It is found that, a large internal friction angle of the granular phase, representing large drag force between solid particles, helps form the slow regime. Small hydraulic conductivity, representing large inter-phase drag force, also retards the collapse dramatically. Good agreements between our numerical results and other researchers’ numerical and experimental results are observed, which demonstrates the capability of the proposed two-fluid SPH approach in dealing with saturated water–soil mixture flows.  相似文献   

18.
In this paper we wish to demonstrate to what extent the numerical method regularized smoothed particle hydrodynamics (RSPH) is capable of modelling shocks and shock reflection patterns in a satisfactory manner. The use of SPH based methods to model shock wave problems has been relatively sparse, both due to historical reasons, as the method was originally developed for studies of astrophysical gas dynamics, but also due to the fact that boundary treatment in Lagrangian methods may be a difficult task. The boundary conditions have therefore been given special attention in this paper. Results presented for one quasi-stationary and three non-stationary flow tests reveal a high degree of similarity, when compared to published numerical and experimental data. The difference is found to be below 5, in the case where experimental data was found tabulated. The transition from regular reflection (RR) to Mach reflection (MR) and the opposite transition from MR to RR are studied. The results are found to be in close agreement with the results obtained from various empirical and semi-empirical formulas published in the literature. A convergence test shows a convergence rate slightly steeper than linear, comparable to what is found for other numerical methods when shocks are involved.  相似文献   

19.
针对传统SPEI方法中基于CSF模型的表面张力算法,在计算边界、尖角等粒子缺失部位的曲率时存在偏差较大,且粒子秩序较差,对大变形问题表面张力计算精度较低的问题,在Morris提出的表面张力SPH方法基础上,通过引入CSPM方法对边界法向的计算和曲率的计算进行修正,得到了表面张力修正方程组.应用本文方法模拟了水溶液中初始...  相似文献   

20.
光滑粒子法中的一种新的核函数   总被引:5,自引:0,他引:5  
分析了传统的核函数产生压缩失稳现象的原因,提出了消除这种压缩失稳现象的一种新的核函数。采用改进的光滑粒子法,对几种常用的核函数进行了一维应变波的对比计算。结果表明:所提出新的核函数在应力波计算中不但保证了计算精度,还能有效地消除压缩失稳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号