首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
PbWO4是一类重要的半导体,广泛运用于高能物理领域无机闪烁晶体.它具有许多独特的物理性能,如衰减时间短(10 ns)、能量密度高(8.28 cm3)、低光产率(300 photons/MeV)、短辐射长度(0.9 cm)和高抗辐照损伤等. PbWO4纳米晶体的激子荧光、热荧光和其它光学性能主要取决PbWO4晶体的形貌和微观结构.目前已经合成了不同结构的PbWO4纳米/微米晶体,如四角双锥微米晶、微米球、纳米棒、纳米纺垂体等.近年来, PbWO4的光催化性能也引起人们的重视.研究发现, PbWO4晶体的光催化性能和其形貌、微观结构密切相关.如在不同形貌的十四面体、三维多尺度微米球和纳米颗粒中, PbWO4微米球表现了极高的光催化活性.此外, PbWO4微米球由于密度大,非常容易分离,从而有利于其回收利用,在循环使用时具有很高的稳定性.因此,合成具有特殊形貌的PbWO4纳米/微米晶体具有重要的理论和现实意义.此外,合成贵金属/半导体复合纳米结构是提高光催化性能的另一有效策略.在贵金属/半导体复合纳米结构中,光生电子(e–)和(h+)的复合可以在很大程度上得到抑制,因为光生e–可以快速地迁移至贵金属颗粒中心,从而加速e–和h+的分离.本文利用水热结合焙烧法首先合成了长度大于1μm的棒状PbWO4微米晶.然后利用光化学沉积法,在PbWO4微米晶表面沉积不同含量(0.5 wt%,1 wt%,和2 wt%)的Pt纳米粒子.利用X射线衍射(XRD)、N2物理吸附、扫描电镜(SEM)、透射电镜(TEM)、光电子能谱(XPS)、光致发光谱(PL)和紫外-可见漫反射吸收光谱(UV-Vis DRS)等手段对所制PbWO4和Pt/PbWO4进行了表征.表征结果表明,合成的PbWO4和Pt/PbWO4的比表面积很小(1.5–1.9 m2/g),沉积的Pt纳米粒子为金属态. UV-Vis DRS测试表明,沉积的Pt纳米粒子在光照下可以产生表面等离子共振,促进可见光的吸收.另外, PL的结果则证实Pt纳米粒子的存在还可抑制PbWO4晶体在光照下产生的光生e–和h+的分离.而XRD和高分辨TEM分析表明PbWO4微米棒的晶体生长方向为(–102)晶体方向.电子选区衍射表明,棒状PbWO4微米晶具有极高的结晶度.以氙灯为光源进行了光催化降解染料酸性橙II的光催化性能测试.结果表明,当沉积1–2 wt%Pt纳米粒子时,可使光催化活性提高2倍左右.另外, Pt/PbWO4微米棒的密度较大,非常容易进行离心分离催化剂及其循环使用.在第一次使用时酸性橙II的降解率为93%,而在第四次使用时酸性橙II的降解率仍维持在88%,表现出很好的光催化稳定性. Pt/PbWO4具有很高的光催化活性的原因,一方面是由于其具有很高的结晶度和独特的棒状结构,另一方面是由于沉积的Pt纳米粒子在光照下可以产生表面等离子共振,促进了可见光的吸收和光生e–与h+的分离.  相似文献   

2.
转化CO2为有机组分是缓解全球变暖和保障持续能源供给的有效方法之一.采用简易的离子交换结合水合肼还原法制备了一系列不同晶相Ag2WO4载银(Ag/Ag2WO4)的等离子共振光催化剂,并用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜-能量色散X射线光谱(SEM-EDS)、紫外-可见(UV-Vis)吸收光谱和比表面积测试对催化剂进行了表征.较之Ag2WO4, Ag/Ag2WO4在可见光催化还原CO2生成CH4时显示了明显提高的量子产率(QY)、能量投入产出比(EROEI)、转换数(TON),就Ag/α-Ag2WO4, Ag/β-Ag2WO4和Ag/γ-Ag2WO4而言,最佳催化剂为Ag/β-Ag2WO4,其实际最佳Ag:Ag2WO4摩尔比为4:96,该催化剂还原CO2为CH4的QY、EROEI、TON和拟一级反应速率常数分别为0.145%、0.067%、9.61和1.96×10-6 min-1.此外,制备的等离子共振Ag/Ag2WO4光催化剂在可见光辐照下进行循环反应仍能保持稳定性.局域表面等离子共振效应是强化Ag/Ag2WO4光催化剂活性和稳定性的主要原因.  相似文献   

3.
TiO_2作为一种光催化剂广泛应用于各种污染物的降解.但是它较大的宽禁带(~3.2 eV)导致其很难吸收可见光,因此寻找窄禁带的具有可见光响应的半导体光催化剂成为近年来光催化研究的热点.在众多窄禁带光催化剂中,纯Ag_2S在降解污染物方面并不出色,但是作为一种窄禁带的直接带隙半导体,它在加快电子迁移和提高光量子效率方面表现出色.目前有许多高催化活性的Ag_2S异质结复合半导体光催化剂的报道,如Ag_2Mo_3O_(10)-Ag_2S,TiO_2-Ag_2S,ZnS-Ag_2S和NiO-Ag_2S等.Ag_2WO_4是一种具有新颖物理化学性质的半导体材料,在催化、传感器、抗菌和光致发光等方面有着广泛应用.但是,Ag_2WO_4的理论带隙较宽,约为3.5 eV,而且光照下Ag_2WO_4很容易产生光化学腐蚀而分解出单质银,作为光催化剂存在太阳光利用率低和稳定性较差等缺点.声化学是一种特殊纳米材料的合成方法.它主要是利用超声空化产生特殊的物理化学环境来强化化学键的生成,同时实现半导体从无定形态到固定晶型转变.本文采用超声辅助共沉淀法制备了长为0.2-1μm、直径为20-30 nm的Ag_2S/Ag_2WO_4微米棒复合光催化剂.利用X射线衍射(XRD)、N_2物理吸附、扫描电镜、透射电镜、光电子能谱、光致发光谱(PL)和紫外-可见漫反射吸收光谱(UV-vis DRS)和光电流等手段对所制Ag_2S,Ag_2WO_4和Ag_2S/Ag_2WO_4进行了表征.结果表明,合成的样品比表面积较小(2.7-3.6 m~2/g).UV-vis DRS测试表明,声化学处理能有效拓宽Ag_2S/Ag_2WO_4在可见光区的吸收范围,提高其可见光响应性能.另外,PL和光电流测试结果证实,在声化学制备的Ag_2S/Ag_2WO_4体系中,光生电子(e~-)-空穴(h~+)的复合过程被极大地限制,具有较高的e~--h~+分离效率.以金卤灯为光源进行了光催化降解染料亚甲基蓝的性能测试.结果表明,声化学合成的Ag_2S/Ag_2WO_4的反应速率常数(0.150 min-1)分别为单纯Ag2WO4(0.031 min-1)和Ag2S(0.004 min-1)的4.7和29.8倍.自由基捕获实验表明,在Ag_2S/Ag_2WO_4光催化降解甲基橙过程中主要的活性物种为超氧自由基(·O_2~-)和光生空穴(h~+).此外,声化学合成的Ag_2S/Ag_2WO_4表现出很好的光催化稳定性.循环使用3次后,该样品对亚甲基蓝的光催化活性仍高达80.4%,而纯Ag_2WO_4几乎完全失活.Ag_2S/Ag_2WO_4具有很高的光催化活性的原因,一方面是声化学处理提高了催化剂的结晶度,同时生成了独特的棒状结构;另一方面是在超声作用下,Ag_2S和Ag_2WO_4两相紧密接触形成异质结,促进了可见光的吸收和光生e~-与h~+的分离.  相似文献   

4.
研究采用水热法制备了花状Bi_2WO_6与TiO_2和Bi-TiO_2相复合的光催化剂,并使用新型LED节能灯为光源催化氧化室内甲醛.研究发现,粉末态Bi_2WO_6显示出花状结构,但无光催化氧化活性,而将Bi_2WO_6粉末与TiO_2和Bi-TiO_2复合后,两者相互作用所形成异质结结构形态,尤其Bi_2WO_6/Bi-TiO_2催化剂,所制样品展示出更佳的催化氧化活性,而经浸渍法所得样品几乎无光催化氧化活性,催化剂随着TiO_2和Bi-TiO_2含量的增加,复合催化剂显现出不尽相同的氧化活性规律,其中Bi_2WO_6与Bi-TiO_2质量比为1∶2样品表现最佳,36 h催化氧化甲醛转化率高达92.2%,甲醛浓度低于我国居室空气中甲醛最高容许浓度,且催化剂显示出良好的稳定性及重复性.  相似文献   

5.
作为一种绿色技术,半导体光催化氧化广泛应用于环境污染物治理和太阳能转化领域.高效、稳定、可回收利用催化剂的开发是光催化技术发展的一个重要方向.Ag系半导体光催化剂因在可见光分解水制氢及降解有机污染物等方面表现出优异的催化性能而广受关注.然而,该催化剂失活快,制约了其应用.因此,提高Ag系半导体材料的光催化稳定性成为近年研究热点.在各种Ag基光催化剂中,Ag3PO4光催化剂因其在可见光下光氧化水产生O2以及有机染料的光催化分解中有着高的量子效率,引起了人们广泛关注.如何进一步提升Ag3PO4光催化剂性能及在光催化过程中的稳定性成为研究焦点,包括Ag3PO4光催化剂的特殊形貌和晶体结构控制生长以及复合材料控制制备.但是Z型Ag3PO4基可见光催化剂的构筑仍然是一个挑战.本文利用Ag2MoO4和Ag3PO4的溶液相反应法合成了Z型Ag3PO4/Ag2MoO4复合光催化剂,通过Ag3PO4/Ag2MoO4异质结光催化剂在可见光下降解罗丹明B(RhB)、亚甲基橙(MO)、亚甲基蓝(MB)和苯酚研究了其光催化性能,采用X射线衍射(XRD)、能谱、傅立叶变换红外光谱(FT-IR)、拉曼光谱、场发射扫描电子显微镜(FE-SEM)以及紫外可见漫反射光谱(UV-vis)等手段表征了该催化剂.XRD,FTIR和拉曼光谱结果表明,复合材料由Ag3PO4,Ag2MoO4和单质银组成,表面成功合成了Z构型Ag3PO4/Ag/Ag2MoO4复合材料.SEM结果发现纯Ag3PO4是规则的球状,纯Ag2MoO4则是多面体状块的颗粒,在Ag3PO4/Ag2MoO4复合材料中可以看到规则的球状体Ag3PO4和Ag2MoO4纳米颗粒,并且随着Ag2MoO4含量的增加,Ag3PO4颗粒的尺寸逐渐减小.UV-vis结果发现Ag2MoO4的加入拓展了复合材料对可见光的吸收范围.光催化性能测试结果表明,8%Ag2MoO4/Ag3PO4在可见光下具有优异的光催化性能:可见光照射5 min,RhB,MO和MB的降解效率分别可达95%,97%和90%.复合材料样品经过4个循环实验后,其降解RhB的效率仍然保持在84%,证明了其具有较高的稳定性.为了进一步研究Ag3PO4/Ag2MoO4的光催化机理,我们用对苯醌、乙二胺四乙酸二钠和丁醇进行了捕捉剂实验.结果表明,超氧自由基和光生空穴在降解有机染料过程中起主要作用.通过光电流测试、复合材料价带导带位置计算以及循环过程样品XRD分析并结合文献结果认为,Z构型Ag3PO4/Ag/Ag2MoO4异质结光催化体系以及可见光照射初期金属Ag纳米颗粒的生成是其具有高光催化活性和稳定性的原因.  相似文献   

6.
首先利用水热法制备了由纳米片组装的粒径为1.5–2μm的Bi2WO6微球,然后在微球表面沉积了不同含量的AgCl (5 wt%,10wt%,20wt%,30wt%),制备了异质结构AgCl/Bi2WO6微球光催化剂.利用X射线粉末衍射、扫描电镜、透射电镜、红外光谱、紫外-可见漫反射吸收等手段对所制的光催化剂进行表征,并以紫外光和可见光分别为光源,罗丹明B为降解对象测试了其光催化活性,考察复合不同含量的AgCl对Bi2WO6光催化剂的性能影响.结果表明,沉积AgCl对Bi2WO6的晶体结构、表面性能和光吸收性能没有产生明显影响,但大幅度提高了Bi2WO6的紫外和可见光催化活性.当复合20wt%AgCl时, AgCl/Bi2WO6光催化活性最佳,紫外光下比纯Bi2WO6提高了2.2倍,可见光下提高了1倍.这主要是由于形成的AgCl/Bi2WO6异质结能有效抑制光生电子和空穴的复合,从而提了其光催化性能.  相似文献   

7.
砖形BiVO4微米棒光催化剂的制备及其光催化性能   总被引:1,自引:0,他引:1  
BiVO4;砖形微米棒;乳浊液;光催化;亚甲基兰  相似文献   

8.
用微波辅助多元醇法对预先制备的ZnO微米球进行修饰,合成了载银氧化锌微米球(ZnO/Ag). 利用X射线衍射仪、场发射扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、紫外-可见双光束分光光度计和光致发光光谱仪等对样品的结构、形貌和光学性能进行了表征. 在紫外光照射下,通过亚甲基蓝的降解反应研究了样品的光催化活性. 结果表明,所制备的ZnO/Ag微米球是由面心立方的Ag纳米颗粒附着在纤锌矿结构的ZnO球表面形成;与ZnO相比,ZnO/Ag的紫外-可见光吸收光谱发生明显红移,在紫外和可见光范围均有较强的吸收;随着Ag含量的增加,ZnO/Ag荧光光谱强度先减弱后增强;与ZnO相比,ZnO/Ag的光催化活性明显提高,AgNO3 浓度为0.05 mol/L时制得的ZnO/Ag光催化活性最高.  相似文献   

9.
采用水热法制备Bi2WO6-BiPO4异质结光催化剂.利用模拟太阳光照射下的罗丹明B降解实验评价了Bi2WO6-BiPO4复合物的光催化性能.结果表明,Bi2WO6-BiPO4光催化活性比Bi2WO6和BiPO4高得多.当Bi2WO6与BiPO4的摩尔比为1:1时复合光催化剂对罗丹明B的降解率最高.Bi2WO6-BiPO4催化活性增强主要归结为两者之间形成了有效的异质结结构,其内建电场能够促进光生载流子的分离.同时,Bi2WO6的加入增强了其对可见光的吸收.研究表明O2^· -和h^+在光催化降解过程中是主要的活性物种.  相似文献   

10.
通过高温煅烧和油浴的方法构筑二维/三维(2D/3D) ZnIn2S4/TiO2异质结, 应用于光催化降解罗丹明B (RhB)和四环素(TC), 来研究异质结的构筑对TiO2可见光响应范围和光生载流子对分离效率的影响. 结果表明, TiO2维持了MOFs的形貌, 显示窄的可见光响应范围和高的光生电荷复合率, 与ZnIn2S4纳米片复合后, TiO2的比表面积增大, 光催化活性位点增多. 带隙宽度也由TiO2的3.23 eV减小到ZnIn2S4/TiO2-II的2.52 eV, 从而获得了更宽的可见光响应范围. 能带结构表明ZnIn2S4/TiO2是type II型异质结, 提高了光生载流子对的分离与转移效率. 在可见光照射下, ZnIn2S4/TiO2-II显示了最高的RhB光催化降解效率(93%), 分别是TiO2和ZnIn2S4的18和2倍. 同时, ZnIn2S4/TiO2-II也显示出比TiO2和ZnIn2S4更高的TC降解效率(90%). 循环实验表明ZnIn2S4/TiO2-II能保持良好的稳定性, 经5次循环实验后仍能降解83%的RhB. 研究表明基于MOFs衍生的TiO2构筑2D/3D ZnIn2S4/TiO2异质结是提高TiO2光催化性能的一条有效途径.  相似文献   

11.
钱进  薛瑶  敖燕辉  王沛芳  王超 《催化学报》2018,39(4):682-692
钙钛矿型NaNbO3由于其非线性光学、铁电、离子导电性、高声速、光催化性能和光折变等优良性能而备受关注. 在光催化反应中, 宽禁带宽度(≈ 3.24 eV)使NaNbO3具有较高的导带底(CBM)和较低的价带顶(VBM). 因此, 它表现出强烈的光氧化和光还原能力. 众所周知, 钙钛矿型光催化剂光电子激发和传输能力的增强归因于其较高的对称性. 因此, 具有高对称性的立方NaNbO3有利于电子激发和转移. 但是, 一些固有的缺点, 包括电荷分离效率低、量子产率差和光催化活性差等, 限制了其在光催化领域的实际应用. 为了解决这些问题, 一种有效的方法是与其他半导体结合, 形成具有改善光催化活性的异质结复合物. CeO2作为传统的催化剂在光催化领域得到了广泛研究. CeO2具有稳定、无毒的特点, 是一种n型半导体. 目前, 研究人员已经发现CeO2与不同半导体的耦合可以提高CeO2的光催化活性. 这归因于能级水平的适当匹配.本文通过简易水热法制备了高活性的CeO2/NaNbO3异质结复合物, 并采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM, HRTEM)和紫外-可见漫反射光谱(DRS)等表征技术研究了所制光催化剂的物相结构、样品形貌和光学性能. 所制样品的光催化活性通过光催化降解无色抗菌环丙沙星(CIP)和染料罗丹明B(RhB)证实. 结果表明,在紫外和可见光照射, CeO2/NaNbO3复合物比纯NaNbO3具有更高的光催化活性. 此外, CeO2/NaNbO3复合物中CeO2的最佳质量比为2.0 wt%. 紫外光照射下光催化性能的显著提高是由于CeO2/NaNbO3异质结的形成不仅提高了光生电荷在界面范围内的迁移速率, 而且降低了光激发产生的电子和空穴的复合率. 可见光照射下内置电场的存在促进了电子和空穴的分离, 提高了光催化性能. 此外, 利用光致发光(PL)光谱、光电流、电化学阻抗谱和捕获实验证明了样品的光催化反应机理.捕获实验结果表明, ·OH自由基、·O2-自由基和空穴都参与了RhB的光催化降解过程. 最后, 探讨了提高光催化活性的可能机理.  相似文献   

12.
Spinel structure nickel ferrite (NiFe2O4) doped graphitic carbon nitride (g-C3N4) photocatalyst NiFe2O4/g-C3N4 was synthesized by the coprecipitation route to enhance the photocatalytic activity for the visible-light driven degradation of methyl orange. The NiFe2O4 doping content is responsible for the microstructure and photocatalytic activity of NiFe2O4/g-C3N4 samples. Compared with pure NiFe2O4 and g-C3N4, the 2-NiFe2O4/g-C3N4 composite with NiFe2O4 doping of 2.0 wt% exhibited excellent photocatalytic activity and superior stability after five runs for degrading methyl orange under visible light irradiation. The catalytic activity of 2-NiFe2O4/g-C3N4 sample produced using the coprecipitation route was higher than those of conventional 2-NiFe2O4/g-C3N4 bulks prepared by the impregnation approach. The prepared samples for the photocatalytic degradation of methyl orange followed pseudo-first-order reaction kinetics. It’s ascribed to the synergistic effect between NiFe2O4 and g-C3N4, which can inhibit the recombination of photoexcited electron-hole pairs, accelerate photoproduced charges separation, and enhance the visible light absorption.  相似文献   

13.
The novel three-component Fe3O4/TiO2/Ag composite mircospheres were prepared via a facile chemical deposition route. The Fe3O4/TiO2 mircospheres were first prepared by the solvothermal method, and then Ag nanoparticles were anchored onto the out-layer of TiO2 by the tyrosine-reduced method. The as-prepared magnetic Fe3O4/TiO2/Ag composite mircospheres were applied as photocatalysis for the photocatalytic degradation of methylene blue. The results indicate that the photocatalytic activity of Fe3O4/TiO2/Ag composite microspheres is superior to that of Fe3O4/TiO2 due to the dual effects of the enhanced light absorption and reduction of photoelectron–hole pair recombination in TiO2 with the introduction of Ag NPs. Moreover, these magnetic Fe3O4/TiO2/Ag composite microspheres can be completely removed from the dispersion with the help of magnetic separation and reused with little or no loss of catalytic activity.  相似文献   

14.
The photocatalytic ability of ZnO is improved through the addition of flower-like Bi2WO6 to prepare a Bi2WO6/ZnO composite with visible light activity. The composite is characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with UV–vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. After modification, the band gap energy of Bi2WO6/ZnO is reduced from 3.2 eV for ZnO to 2.6 eV. Under visible light irradiation, the Bi2WO6/ZnO composite shows an excellent photocatalytic activity for degrading methylene blue (MB) and tetracycline. The photo-degradation efficiencies of (0.3:1) Bi2WO6/ZnO for MB and tetracycline are approximately 246 and 4500 times higher than those of bare ZnO, respectively, and correspondingly, the photo-degradation rates for the two pollutants are approximately 120 and 200 times higher than those with bare ZnO, respectively. Moreover, the photocatalyst of (0.3:1) Bi2WO6/ZnO exhibits a higher transient photocurrent density of approximately 4.5 μA compared with those of bare Bi2WO6 and ZnO nanoparticles. The successful recombination of Bi2WO6 and ZnO enhances the photocatalytic activity and reduces the band gap energy of ZnO, which can be attributed to the effective separation of electron–hole pairs. Active species trapping experiments display that [O2]? is the major species involved during photocatalysis rather than ?OH and h+. This study provides insight into designing a meaningful visible-light-driven photocatalyst for environmental remediation.  相似文献   

15.
Bi2WO6/TiO2 heterojunction photocatalysts with two different microstructures were controllably fabricated via a facile two-step synthetic route. XRD, XPS, SEM, TEM, BET-surface, DRS, PL spectra, photoelectrochemical measurement (Mott-Schottky), and zeta-potential analyzer were employed to clarify structural and morphological characteristics of the obtained products. The results showed that Bi2WO6 nanoparticles/nanosheets grew on the primary TiO2 nanorods. The TiO2 nanorods used as a synthetic template inhibit the growth of Bi2WO6 crystals along the c-axis, resulting in Bi2WO6/TiO2 heterostructure with one-dimensional (1D) morphology. The photocatalytic properties of Bi2WO6/TiO2 heterojunction photocatalysts were strongly dependent on their shapes and structures. Compared with bare Bi2WO6 and TiO2, Bi2WO6/TiO2 composite have stronger adsorption ability and better visible light photocatalytic activities towards organic dyes. The Bi2WO6/TiO2 composite prepared in EG solvent with optimal Bi:Ti ratio of 2:12 (S-TB2) showed the highest photocatalytic activity, which could totally decompose Rhodamine B within 10 min upon irradiation with visible light (λ > 422 nm), and retained the high photocatalytic performance after five recycles, confirming its stability and practical usability. The results of PL indicated that Bi2WO6 and TiO2 could combine well to form a heterojunction structure which facilitated electron–hole separation, and lead to the increasing photocatalytic activity.  相似文献   

16.
Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.  相似文献   

17.
以AgNO3, Na2HPO4和硫粉为原料, 采用共沉淀-水热法合成了具有太阳光响应型Ag2S/Ag3PO4复合材料, 运用扫描电子显微镜(SEM)、 X射线粉末衍射(XRD)、 X射线光电子能谱(XPS)和紫外-可见漫反射(UV-Vis DR)光谱等方法对样品进行了表征, 并在模拟太阳光条件下, 考察了Ag2S/Ag3PO4对水杨酸的光催化降解效率. 结果表明, 与Ag3PO4相比, Ag2S的负载量为1%(质量分数)时Ag2S/Ag3PO4粒径变小, 呈立方晶相结构; Ag2S/Ag3PO4复合材料可以有效促进光生电子-空穴分离, 使Ag3PO4禁带宽度降低到2.24 eV, 并增强了可见光的吸收能力. 在Ag2S负载量为1%, 120 ℃水热4 h条件下, Ag2S/Ag3PO4复合材料具有最佳光催化活性, 经模拟太阳光照射60 min对10 mg/L的水杨酸去除率达到88.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号