首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electroanalytical method has been developed for the determination of methidathion by squarewave voltammetry on a Nafion®-coated glassy carbon electrode in aqueous solutions with 0.05 M acetate buffer as a supporting electrolyte. The best voltammetric conditions were found to be pH 4.0, a preconcentration potential of 0.45 V, and a preconcentration time of 60 s. The experimental parameters, such as pH, film thickness, preconcentration potential, preconcentration time, and square-wave voltammetric parameters, were optimized. Using this method, the calibration curve is linear in the range 5 × 10?8?7 × 10?7 M with a detection limit (S/N = 3) of 30 nM.  相似文献   

2.
We report on a glassy carbon electrode (GCE) modified with a lead ionophore and multiwalled carbon nanotubes. It can be applied to square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) for 300?s in pH?4.5 acetate buffer containing 400?μg?L?1 of Bi(III). The ionophore-MWCNTs film on the GCE possesses strong and highly selective affinity for Pb(II) as confirmed by quartz crystal microbalance experiments. Under the optimum conditions, a linear response was observed for Pb(II) ion in the range from 0.3 to 50?μg?L?1. The limit of detection (at S/N?=?3) is 0.1?μg?L?1. The method was applied to the determination of Pb(II) in water samples with acceptable recovery.
Figure
A glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes is successfully applied to sensitive and selective square wave anodic stripping voltammetric determination of Pb(II) ion after preconcentration of Pb(II) at ?1.0?V (vs. SCE) in pH?4.5 solutions containing 400?μg?L?1 of Bi(III).  相似文献   

3.
《Electroanalysis》2006,18(1):59-63
Bismuth‐film electrodes on glassy‐carbon substrates have been successfully applied for adsorptive‐stripping voltammetric measurements of trace molybdenum in the presence of chloranilic acid (CAA). The procedure is based on the preconcentration of the molybdenum‐chloranilic acid complex at a preplated bismuth film electrode held at ?0.55 V (vs. Ag/AgCl), followed by a negatively‐sweeping square‐wave voltammetric scan. Factors influencing the adsorptive stripping performance, including different ligands, solution pH, CAA concentration, preconcentration time and potential, have been optimized. The response compares favorably with that observed at mercury film electrodes, and is linear over the 5–50 μg/L Mo concentration range (one min preconcentration). A detection limit of 0.2 μg/L molybdenum is obtained following a 10 min accumulation. High stability is indicated from the reproducible response of a 100 μg/L molybdenum solution (n= 60; RSD=2.6%). Applicability to seawater samples is demonstrated.  相似文献   

4.
We have developed a sensor for the square wave anodic stripping voltammetric determination of Pb(II). A glassy carbon electrode was modified with a thin film of an antimony/poly(p-aminobenzene sulfonic acid) composite in air-saturated aqueous solution of pH 2.0. Compared to a conventional antimony film electrode, the new one yields a larger stripping signal for Pb(II). The conditions of polymerization, the concentration of Sb(III), the pH value of the sample solution, the deposition potential and time, frequency, potential amplitude, and step increment potential were optimized. Under the optimum conditions, a linear response was observed for Pb(II) in the range of 0.5 to 150.0 μg?L?1. The detection limit for Pb(II) is 0.1 μg?L?1.
Figure
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and the modified electrode was then prepared by in situ depositing antimony and target metal on the poly(p-ABSA) coated glassy carbon electrode. The antimony/poly(p-ABSA) film electrode displays high electrochemical activity in giving a peak current that is proportional to the concentration of Pb(II) in a certain range.  相似文献   

5.
A cathodic differential pulse voltammetric determination of colchicine was validated using a glassy carbon electrode in HClO4/H3PO4 0.01 M. Colchicine gives an irreversible, diffusion-controlled peak at −862 mV vs. Ag/AgCl reference electrode. The cathodic peak is strongly influenced by a more alkaline environment with a shift towards more negative potentials. Method optimization was carried out in parallel for three types of electrodes (glassy carbon, mercury film and bismuth film coated glassy carbon). The cathodic peak current is higher using film-coated electrodes, but shows poorer intra-day reproducibility and a longer analysis time due to film renewal. Thus, a bare glassy carbon electrode was used to determine colchicine in the concentration range of 2.4 − 50 μg mL−1 (R 2 = 0.9998, n = 5), with a calculated detection limit of 0.80 μg mL−1. The proposed method was characterized according to ICH Harmonized Tripartite Guidance Q2(R1) by validation parameters (selectivity, linearity, accuracy, fidelity, limit of detection, limit of quantification) and it was successfully applied for the determination of colchicine from tablets, without the interference of the excipients. The method’s performances were evaluated and compared with both a known polarographic method and the official quantitative spectrophotometric determination from the Romanian Pharmacopoeia, Xth edition, respectively.   相似文献   

6.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

7.
This communication describes the determination of an essential amino acid, L ‐methionine (L ‐Met) in the presence of important interferents, ascorbic acid (AA) and uric acid (UA) at physiological pH using a glassy carbon electrode modified with an electropolymerized film of 3‐amino‐5‐mercapto‐1,2,4‐triazole (p‐AMTa). The bare glassy carbon electrode fails to show a voltammetric signal for L ‐Met in the presence of AA and UA at pH 7.2. However, the p‐AMTa electrode separates the voltammetric signals of AA, UA and L ‐Met with pronounced oxidation currents. The amperometric current of L ‐Met was increased linearly from 1.0×10?7 to 1×10?4 M and the detection limit was found to be 4.12×10?10 M (S/N=3).  相似文献   

8.
The behavior of meso-tetraphenylporphyrin (H2TPP) and its Co(III)-complex (CoTPPCl) in Nafion® film has been studied by cyclic voltammetry and visible spectroscopy. Buffer titration of H4TPP2+ in the film showed only the dication–free-base equilibrium (H4TPP2+H2TPP + 2H+) and the apparent equilibrium constant, pK3,4, was determined to be 4.12. Insertion of cobalt(III) into the H2TPP core in the film has been realized at room temperature by immersion of H2TPP-containing Nafion® film into CoCl2 solution. The electrocatalytic activity of the resulting film toward NO oxidation at a glassy carbon (GC) electrode has been monitored in comparison with other Nafion® films doped with H2TPP or free CoCl2. A GC electrode coated with Nafion® film doped with CoTPPCl exhibited the highest catalytic activity, confirming the involvement of the Co site in a catalytic cycle of NO oxidation. In amperometric detection of NO in phosphate buffer solution at pH 7.4 this electrode demonstrated a linear response to the NO concentration increment. The detection limit at a signal-to-noise ratio of 3 was 1.2 nM.  相似文献   

9.
The electrochemical oxidation of sulfur amino acids, i.e., cysteine, cystine, and methionine, is studied on a glassy carbon electrode modified by a film of nickel(II) polytetrasulfophthalocyanine (poly-NiTsPc). Poly-NiTsPc demonstrates a selective mediator activity in the oxidation of sulfur amino acids, depending on the pH of solution. The proper conditions for fabricating a polymer film on the surface of glassy carbon are found and the conditions of registering the maximal electrocatalytic effect on the modified electrode are determined. A procedure is proposed for the voltammetric determination and amperometric detection of cysteine, cystine, and methionine on an electrode coated by a poly-NiTsPc film under the conditions of flow-injection analysis (FIA). The linear relation of the electrocatalytic response of a composite electrode to amino acid concentration is observed to the level n × 10?6 M in the static mode and n × 10?9 M under FIA conditions.  相似文献   

10.
We report on a novel electrochemical method for the sensitive determination of trace zirconium (Zr) at a glassy carbon electrode modified with a film of acetylene black containing dihexadecyl hydrogen phosphate and in the presence of alizarin violet (AV). The method is based on the preconcentration of the Zr(IV)-AV complex at a potential of ?200?mV (vs. SCE). The adsorbed complex is then oxidized, producing a response with a peak potential of 526?mV. Compared to the poor electrochemical signal at the unmodified GCE, the electrochemical response of Zr(IV)-AV complex is greatly improved, as confirmed by the significant increase in peak current. The effects of experimental conditions on the oxidation current were studied and a calibration plot established. The oxidation current is linearly related to the Zr(IV) concentration in the 8.0?pM to 10?nM concentration range (cAV?=?0.2???M) and 10?nM ~0.6???M (cAV?=?2.0???M), and the detection limit (S/N?=?3) is as low as 4.0?pM for a 3-min accumulation time. The method was successfully employed to the determination of zirconium in standard ore samples.
Figure
A glassy carbon electrode modified with acetylene black-dihexadecyl hydrogen phosphate composite film was used as a novel voltammetric sensor for zirconium(Zr) determination. The stripping peak current at 526?mV exhibits good linearity with concentration of Zr in the range of 8.0?pM to to 0.6???M.  相似文献   

11.
In this study the application of home-made unmodified (GC) and bulk modified boron doped glassy carbon (GCB) electrodes for the voltammetric determination of the linuron was investigated. The electrodes were synthesized with a moderate temperature treatment (1000°C). Obtained results were compared with the electrochemical determination of the linuron using a commercial glassy carbon electrode (GC-Metrohm). The peak potential (E p ) of linuron oxidation in 0.1 mol dm−3 H2SO4 as electrolyte was similar for all applied electrodes: 1.31, 1.34 and 1.28 V for GCB, GC and GC-Metrohm electrodes, respectively. Potential of linuron oxidation and current density depend on the pH of supporting electrolyte. Applying GCB and GC-Metrohm electrodes the most intensive electrochemical response for linuron was obtained in strongly acidic solution (0.1 mol dm−3 H2SO4). Applying the boron doped glassy carbon electrode the broadest linear range (0.005–0.1 μmol cm−3) for the linuron determination was obtained. The results of voltammetric determination of the linuron in spiked water samples showed good correlation between added and found amounts of linuron and also are in good agreement with the results obtained by HPLC-UV method. This appears to be the first application of a boron doped glassy carbon electrode for voltammetric determination of the environmental important compounds.   相似文献   

12.
A stable composite film of multi-walled carbon nanotubes (MWNTs) with a Nafion™ cation exchanger membrane is prepared using a simple and reproducible cast deposition methodology. The MWNTs are cylindrical with diameters in the range of 40–60 nm and a length of up to several micrometers. They provide sufficiently high electrical conductivity across the film. Nafion™ acts both as a binder for the carbon structure and selectivity introducing matrix as shown by voltammetric experiments with the Fe(CN)63−/4− redox system.The anodic stripping responses for Cd and Pb metal accumulated from a solution of 0.2–1 µM in 0.1 M acetate buffer are demonstrated and optimized. The limit of detection under these conditions is typically 51 nM. The feasibility of using the MWNTs/Nafion™ thin film electrode for the anodic stripping voltammetric determination of cadmium and lead in 0.1 M acetate buffer in the presence of surfactants/interferents is examined. Sodium dodecyl sulfate (SDS), Triton X-100 (TX-100), dodecyl pyridinium chloride (DPC), and bovine serum albumin (BSA) were examined as four typical interferents. Relatively small enhancing and suppressing effects on the stripping peak currents for Cd and for Pb detection at the MWNTs/Nafion™ film modified electrode were observed. The MWNTs/Nafion™ thin film electrode performed very well even in the presence of the cationic surfactant DPC and could in future be of wider applicability.  相似文献   

13.
This paper describes the selective electrochemical determination of paracetamol (PA) in the presence of important interferent, ascorbic acid (AA) using an ultrathin electropolymerized film of 5‐amino‐1,3,4‐thiadiazole‐2‐thiol (p‐ATT) modified glassy carbon (GC) electrode in 0.20 M phosphate buffer solution (pH 7.20). Bare GC electrode failed to resolve the voltammetric signals of AA and PA in a mixture. On the other hand, the p‐ATT modified electrode not only separated the voltammetric signals of AA and PA but also enhanced their peak currents. We achieved the lowest detection limit of 0.34 nM (S/N=3) for PA at p‐ATT modified electrode.  相似文献   

14.
Copper complex dye (C.I. Direct Blue 200) film modified electrodes have been prepared by multiple scan cyclic voltammetry. The effect of solution pH and nature of electrode material on film formation was investigated. The optimum pH for copper complex film formation on glassy carbon was found to be 1.5. The mechanism of film formation on ITO seems to be similar to that on GC surface but completely different mechanism followed with gold electrode. Cyclic voltammetric features of our modified electrodes are in consistent with a surface‐confined redox process. The voltammetric response of modified electrode was found to be depending on pH of the contacting solution. UV‐visible spectra show that the nature of copper complex dye is identical in both solution phase and after forming film on electrode. The electrocatalytic behavior of copper complex dye film modified electrode towards oxidation of dopamine, ascorbic acid and reduction of SO52? was investigated. The oxidation of dopamine and ascorbic acid occurred at less positive potential on film electrode compared to bare glassy carbon electrode. Feasibility of utilizing our modified electrode in analytical estimation of dopamine, ascorbic acid was also demonstrated.  相似文献   

15.
We have prepared a new voltammetric sensor for guanine and adenine. It is based on a glassy carbon electrode modified with a Langmuir-Blodgett film made from tetraoxocalix[2]arene[2]triazine. The direct electro-oxidation of adenine and guanine was investigated and the results indicat that in contrast to a bare glassy carbon electrode both guanine and adenine cause an increase in the oxidation peak currents along with a negative shift of the oxidation potentials. The electrode enables the simultaneous determination of guanine and adenine using square wave voltammetry. Analysis of acid denatured calf thymus DNA was carried out and the value of (G + C)/(A + T) was correctly found to be 0.75.
Figure
Both guanine and adenine showed the increase of the oxidation peak currents on LBTOCT-GCE in contrast to that on the bare glassy carbon electrode (GCE).  相似文献   

16.
A strategy is presented for doping graphene into layered double hydroxide films (LDHs) as a means of improving charge transport of the LDH film in a modified glassy carbon electrode. This result in an enhanced electrocatalytic current for dopamine (DA) and a good separation of the potentials of DA, uric acid and ascorbic acid. Under selected conditions, the square wave voltammetric response of the electrode to DA is linear in the concentration range from 1.0 to 199???M even in the presence of 0.1?mM ascorbic acid, and the detection limit is 0.3???M at a signal-to-noise ratio of 3. The method was applied to the determination of DA in pharmaceutical injections with satisfactory results.
Figure
A strategy is presented for doping graphene into layered double hydroxide films (LDHs) as a means of improving charge transport of the LDH film in a modified glassy carbon electrode. This result in an enhanced electrocatalytic current for dopamine (DA) and the square wave voltammetric response of the electrode to DA is linear in the concentration range from 1.0 to 199???M with the detection limit of 0.3???M. The method was applied to the determination of DA in pharmaceutical injections with satisfactory results.  相似文献   

17.
Polynuclear mixed‐valent nickelhexacyanoferrate/phosphomolybdate (NiHCF/PMo), nickel/phosphomolybdate (Ni/PMo) hybrid films were prepared on glassy carbon electrode by multiple scan cyclic voltammetry. Combination of individual components gave the opportunity to fabricate hybrid film with tunable electrochemical and analytical properties compared to individual components. The film growth was monitored using electrochemical quartz crystal microbalance (EQCM). The cyclic voltammogram of the nickelhexacyanoferrate/phosphomolybdate film is characterized by four redox couple whereas nickel/phosphomolybdate hybrid film exhibits three redox couples. Cyclic voltammetric features suggest that the charge transfer process in both films resembles that of surface‐confined redox species. The voltammetric response of nickelhexacyanoferrate/phosphomolybdate film electrode was found to be depending on the pH of the contacting solution. Electrocatalytic behavior of nickel/phosphomolybdate hybrid film coated electrodes toward oxidation of ascorbic acid and reduction of sulfur oxoanion, S2O , was investigated using cyclic voltammetry technique. Analytical application of nickel/phosphomolybdate hybrid film electrode was tested in amperometry and flow injection analysis.  相似文献   

18.
The electrochemical behaviour of lawsone at glassy carbon electrode (GCE) was investigated by using cyclic and differential pulse anodic stripping voltammetric (DPASV) techniques. Cyclic voltammetry was used to study the influence of pH on the peak current and peak potential. The Mcllavnie’s buffer of pH 3.0 was selected as a suitable analytical medium in which lawsone exhibited sensitive diffusion controlled redox peaks (vs. Ag/AgCl). The peak current varied linearly with lawsone concentration in the range between 0.60 and 1.40 μM with a detection limit of 6 nM. The applicability of the proposed method was illustrated by the determination of lawsone present in real samples. A mean recovery of lawsone in the leaf of Lawsonia inermis was 99.5% with a relative standard deviation of 1.15%.  相似文献   

19.
T Z Peng  Z P Yang  H P Li 《The Analyst》1991,116(7):727-730
The psychotherapeutic drug chlorprothixene is shown to adsorb strongly onto a glassy carbon surface in an open circuit. By using this phenomenon to preconcentrate the drug at a glassy carbon electrode prior to differential-pulse voltammetric measurements, sensitivity at the ppb level is readily achieved. The adsorptive stripping response was evaluated with respect to electrolyte, solution pH, accumulation time, concentration dependence and other variables. A linear peak current-concentration relationship was observed up to 1 microgram ml-1 of chlorprothixene; the relative standard deviation (at the 0.6 microgram ml-1 level) is 3.2%. For a preconcentration time of 10 min, the detection limit was found to be 2 ng ml-1. The open circuit preconcentration/medium exchange/voltammetric scheme was used to eliminate interference from sample solutions. The application of the method to human urine samples is described.  相似文献   

20.
The new iridium oxide film electrode, applied for the determination of lead(II), cadmium(II) and copper(II) traces using differential pulse anodic stripping voltammetry (DP ASV) is presented. The electrode display an interesting stripping voltammetric performance which compares with electrodes commonly used in voltammetry. The deposited film is known as anodically electrodeposited iridium oxide film (AEIROF). The AEIROF electrode is characterized by long‐term stability (more than 40 days) and very good reproducibility of the analytical signals in this time (≤12% for 0.5 μM of lead). The regeneration of iridium film is very simple in a time shorter than 60 seconds. The effects of various factors such as: thickness of AEIROF film, preconcentration potential and time, supporting electrolyte composition, potential interferences are optimized. The detection limit for AEIROF film electrode based on glassy carbon for an accumulation time of 30 s is as low as 7 nM for lead(II). The repeatability of the method at a concentration level of the lead(II) as low as 0.5 μM, expressed as RSD is 2.5% (n=10). The proposed method was successfully applied and validated by studying certified reference material CTA‐OTL‐1. Such an attractive use of ‘mercury–free’ ‐ environmentally friendly electrodes offers great promise to measure trace metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号