首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We use two-dimensional simulations to study the design of tapers to provide efficient, low reflection coupling between a waveguide in a two-dimensional photonic crystal (PC) and free space. We find that, largely independent of the PC parameters, or of the length and width of the tapered region, the same type of concave, horn-shaped tapering profile is optimal for coupling from the waveguide into free space, and significantly out-performs the widely used linear taper. We also find that optimal tapers can radiate nearly Gaussian beams, and therefore they can also provide efficient coupling of Gaussian beams from free space into the PC waveguide. These properties are better exhibited by rod-type PCs with Ez polarization than by hole-type PCs with Hz polarization. This study of taper couplers exemplifies a design strategy for photonic circuits which optimizes positioning of the cylinders immediately surrounding the light path, and then builds the rest of the crystal structure around these cylinders.  相似文献   

2.
陈晔  赵鼎  王勇  舒雯 《中国物理 B》2012,21(5):58401-058401
The hybrid-mode dispersion equation of the metal-grating periodic slow-wave structure for a rectangular Cerenkov maser is derived by using the Borgnis function and field-matching methods.An equivalent-circuit model for the taper of the groove depth that matches the smooth waveguide to the metal-grating structure is proposed.By using the equivalentcircuit method,as well as the Ansoft high frequency structure simulator(HFSS) code,an appropriate electromagnetic mode for beam-wave interaction is selected and the equivalent-circuit analysis on the taper is given.The calculated results show that a cumulative reflection coefficient of 0.025 for the beam-wave interaction structure at a working frequency of 78.1 GHz can be reached by designing the exponential taper with a TE z10 rectangular waveguide mode as the input and the desired TE x10 mode as the output.It is worth pointing out that by using the equivalent-circuit method,the complex field-matching problems from the traditional field-theory method for taper design can be avoided,so the taper analysis process is markedly simplified.  相似文献   

3.
Two infrared lasers of frequencies ω1 and ω2 propagating in the TM/TE mode along z? direction in a rippled density semiconductor waveguide are shown to resonantly excite terahertz radiation at the beat frequency when ripple wave number is suitably chosen to satisfy the phase matching. The wave vector of the density ripple is along the direction of laser propagation while a static magnetic field is applied transverse to it. The lasers exert a ponderomotive force on the electrons at the beat frequency. This force, in the presence of density ripple and transverse magnetic field, produces a nonlinear current at the terahertz frequency. The magnetic field enhances the amplitude of the terahertz wave. However terahertz yield is significantly higher in the TM mode laser beating than in the TE mode laser beating.  相似文献   

4.
5.
A self-consistent mathematical model for the transformation of the average intensity of the mode spectrum I(z) of a waveguide field in a multimode planar optical waveguide with a step profile and rough surface is developed. This model is based on the matrix model for multiple scattering of modes in an optical waveguide. The elements of the intermode scattering matrix are found, which describe the process of mutual transfer of the energy of modes along a waveguide and their transformation into radiation modes. The transformation of the I(z) modes in waveguides with large-and small-scale inhomogeneities is investigated. It is shown that the largest qualitative differences in the noted dependences manifest themselves only in the initial portions of the optical waveguide. The length z of these portions is much smaller than the characteristic scale length L k at which the fundamental energy of the kth mode excited in the optical waveguide is renewed. The effect of self-filtration of the mode spectrum I(z) is described, as a result of which a stable (normalized), independent of distance z, distribution I* is formed. It is established that irregularities of the optical waveguide boundaries exert a depolarizing effect on a guided light beam. The specific features of the normalization of the radiative dissipation of a group of modes Ii(z) in an optical waveguide are investigated. It is ascertained that, in the case of small-scale irregularities, the attenuation coefficient is described by a nonlinear monotonic dependence α(z), which asymptotically converges to the value α*, characteristic of the normalized field I*. When the optical-waveguide film has large irregularities, the dependence α(z) is characterized by a pronounced maximum due to the formation of alternative channels of radiative dissipation of the energy of waveguide modes.  相似文献   

6.
We present an efficient algorithm for determining mode eigenvalues as well as field distributions of optical waveguides with two-dimensional transverse refractive index profile. The algorithm is devised with the analytical perturbation correction method combined with the finite difference approximation of Helmoltz's equation. The technique is simple and does not involve solving any eigenvalue equation or matrix formalism. The algorithm reduces abruptly the computation time required for the field convergence to mode, and can calculate any higher-order modes without the need of any pre-conditioning the field w.r.t. waveguide geometry, or calculation of previous order modes and/orthogonalization. The analysis can yield precisely both scalar and polarized modes. By applying it to waveguide problems whose solutions are otherwise known, the efficacy of the method has been established.  相似文献   

7.
Analytical propagation expressions of ultrashort pulsed Elegant Hermite-Gaussian beams are derived and spatiotemporal properties of the pulses with different transverse modes are studied. Singularity of the complex amplitude envelope solution of the pulses obtained under slowly varying envelope approximation is analyzed in detail. The rigorous analytical solution of the pulse is deduced and no singularity emerges in the solution. The obtained results indicate that the transverse mode affects not only the spatiotemporal properties but also the singularity of the pulses. Time delay of the off-axis maximum intensity is more obvious and the singularity is located nearer to the z-axis for the pulse with higher transverse modes.  相似文献   

8.
By comparing numerical and analytical results, it is shown that a system of interacting particles under overdamped motion is very well described by a nonlinear Fokker-Planck equation, which can be associated with nonextensive statistical mechanics. The particle-particle interactions considered are repulsive, motivated by three different physical situations: (i) modified Bessel function, commonly used in vortex-vortex interactions, relevant for the flux-front penetration in disordered type-II superconductors; (ii) Yukawa-like forces, useful for charged particles in plasma, or colloidal suspensions; (iii) derived from a Gaussian potential, common in complex fluids, like polymer chains dispersed in a solvent. Moreover, the system is subjected to a general confining potential, ??(x)?=?(??|x| z )/z (???>?0, z?>?1), so that a stationary state is reached after a sufficiently long time. Recent numerical and analytical investigations, considering interactions of type (i) and a harmonic confining potential (z?=?2), have shown strong evidence that a q-Gaussian distribution, P(x,t), with q?=?0, describes appropriately the particle positions during their time evolution, as well as in their stationary state. Herein we reinforce further the connection with nonextensive statistical mechanics, by presenting numerical evidence showing that: (a) in the case z?=?2, different particle-particle interactions only modify the diffusion parameter D of the nonlinear Fokker-Planck equation; (b) for z????2, all cases investigated fit well the analytical stationary solution P st(x), given in terms of a q-exponential (with the same index q?=?0) of the general external potential ??(x). In this later case, we propose an approximate time-dependent P(x,t) (not known analytically for z????2), which is in very good agreement with the simulations for a large range of times, including the approach to the stationary state. The present work suggests that a wide variety of physical phenomena, characterized by repulsive interacting particles under overdamped motion, present a universal behavior, in the sense that all of them are associated with the same entropic form and nonlinear Fokker-Planck equation.  相似文献   

9.
Temporal and spatial variations of fine-structure constant \(\alpha \equiv e^{2}/\hbar c\) in cosmology have been reported in analysis of combination Keck and VLT data. This paper studies the variations based on consideration of basic spacetime symmetry in physics. Both laboratory α 0 and distant α z are deduced from relativistic spectrum equations of atoms (e.g., hydrogen atom) defined in inertial reference systems. When Einstein’s Λ≠0, the metric of local inertial reference systems in SM of cosmology is Beltrami metric instead of Minkowski, and the basic spacetime symmetry has to be de Sitter (dS) group. The corresponding special relativity (SR) is dS-SR. A model based on dS-SR is suggested. Comparing the predictions on α-varying with the data, the parameters are determined. The best-fit dipole mode in α’s spatial varying is reproduced by this dS-SR model. α-varyings in whole sky are also studied. The results are generally in agreement with the estimations of observations. The main conclusion is that the phenomenon of α-varying cosmologically with dipole mode dominating is due to the de Sitter (or anti de Sitter) spacetime symmetry with a Minkowski point in an extended special relativity called de Sitter invariant special relativity (dS-SR) developed by Dirac-Inönü-Wigner-Gürsey-Lee-Lu-Zou-Guo.  相似文献   

10.
A detailed analysis of electrooptic light modulation in optical waveguides is presented. Several important problems of a waveguide modulator, such as the difference of waveguide axes from crystalline electrooptic ones, the distribution of transverse and longitudinal field components of light modes, and the traveling-wave property of the modulating field, are discussed. The analysis is based on the coupled mode theory, regarding the modulation as the coupling among sidebands of unperturbed waveguide modes. The coupled mode equation is derived for the modulation in optical waveguides. It can be solved if the normal modes of the waveguide are given. Actually the equation is solved for the modulation in dielectric slab waveguides and the mechanism of modulation is discussed. The results of the analysis are applied to designing two types of waveguide modulators. In an example (10.6 μm modulator with a GaAs slab waveguide) a new efficient crystal orientation is found. The calculated phase retardation with this orientation is 0.13 rad/(V·cm) with a 1 μm thick slab. Another example of a 0.633 μm modulator using a LiTaO3 crystal as a substrate is also described.  相似文献   

11.
In this work we present a phase to (x,y,z)-coordinates transformation method for the calibration of a fringe projection profilometer. Our technique is divided in two parts: (1) phase to z transformation (for axial calibration) based on the typical polynomial fitting which uses a flat plane placed at several z positions to measure the phase of the projected fringes. (2) Phase to x and y transformation (for transverse calibration) based on the use of a crossed gratings pattern and a Fourier phase measurement method to determine x and y coordinates at several z positions. As will be shown the use of the crossed gratings pattern and the Fourier phase measurement method for transverse calibration is advantageous in several aspects: an unique image can give us x and y information at once. It provides x and y coordinates at each pixel in the image avoiding the use of interpolation methods. We present some experimental results and explain the viability of the proposed technique.  相似文献   

12.
Haina Wu  Guangyu Yi 《Physics letters. A》2008,372(43):6531-6535
The mixed spin-1/2 and spin-1 Ising chain with both longitude and transverse single-ion anisotropies Dz and Dx is solved exactly by means of a mapping to the spin-1/2 Ising chain with the alternating transverse fields and the Jordan-Wigner transformation. The analytical expressions of the quasi-particles' spectra Λk, the minimal energy gap Δ0 for exciting a fermion quasi-particle, the minimal energy gap Δh for exciting a hole, and the ground state energy are obtained. The phase diagram of the ground state is also given. The results show that when Dz?0 for any finite value of Dx, there is no quantum critical point and the ground state is always in a spin ordered phase disregard of the boundary condition in the present system.  相似文献   

13.
The pulse propagation in a non-linear slab waveguide of parabolic index of refraction is treated by using differential equation techniques. A graded index dielectric slab waveguide free of material dispersion with a cubic order non-linearity is considered. The electromagnetic wave inside the waveguide is described in terms of a non-linear equation. Slowly varying envelope function representation is employed to develop a non-linear partial differential equation for the unknown envelope function of the electric field. An averaging method over the transverse direction is applied to reduce the unknown envelope function non-linear differential equation into a form resembling the well known non-linear Schrödinger differential equation. This equation is solved by applying the Inverse Scattering Method. The N-soliton solution is developed and presented explicitly for the practical case of the single mode dielectric slab waveguide. Numerical results presenting single and double soliton propagation are also given.  相似文献   

14.
A compact wavelength demultiplexer is designed for the operation at 1.30 and 1.55 μm wavelengths using the three-dimensional semi-vectorial beam propagation method. The parabolically tapered multimode interference (MMI) coupler based on the deep-etched SiO2/SiON rib waveguide is introduced into the present demultiplexer for reducing the length. The numerical results show that a MMI section of 330.0 μm in length, which is only 76% length of a straight MMI coupler, is achieved with the contrasts of 42.3 and 39.2 dB in quasi-TE mode, and 38.4 and 37.8 dB in quasi-TM mode at wavelengths 1.30 and 1.55 μm, respectively and the insertion losses below 0.2 dB. The modified finite difference scheme is applied to approximate the resulting equations along the transverse directions, in which the discontinuities of the derivatives of magnetic field components Hy and Hx along the vertical and horizontal interfaces, respectively, are involved.  相似文献   

15.
A modified full-vectorial finite-difference beam propagation method based on H-fields in solving the guided-modes for optical waveguides with step-index profiles is described. The propagation is split into two substeps. In the first substep, the field propagates in the absence of the cross-coupling terms, and then they are evaluated and double used in the second substep. An improved six-point finite-difference scheme is constructed to approximate the cross-coupling terms along the transverse directions. By using the imaginary-distance procedure, the field patterns and the normalized propagation constants of the fundamental modes for a buried rectangular waveguide and rib waveguide are presented, and the hybrid nature of the full-vectorial guided-modes is demonstrated. Solutions are in good agreement with the benchmark results from film mode matching method, which tests the validity and utility of the present method.  相似文献   

16.
The characteristics of electromagnetic waves in a narrowing waveguide are investigated. A method for field analysis is developed based on the application of transverse modes parametrically dependent on the longitudinal coordinate. For a circular cross section waveguide, a system of equations for the wave amplitudes is obtained, the waves being coupled owing to a variable tilt of the walls. It is shown that in the adiabatic approximation, there exist independent eigenwaves whose structure reflects the field energy density variation due to the waveguide radius variation. A detailed analytical and numerical investigation of these fields has been carried out for a waveguide with a special profile of hypergeometric type. The applicability of the adiabatic approximation is studied and conversion of the fundamental mode into higher-order modes is assessed. The amplitudes of the higher-order modes are obtained using the Green function for ordinary differential equations. The region of the waveguide parameters is found where the higher-order mode amplitudes are not great and the adiabatic approximation is highly accurate. The dependence of the transmittance of a semi-infinite waveguide on the input radiation characteristics is obtained. It is established that the field amplitudes at the waveguide output strongly depend on the wavelength of the input radiation, on its transverse structure, and the waveguide profile steepness. The greatest output fields take place in the case of an abrupt dependence of the waveguide radius on the longitudinal coordinate.  相似文献   

17.
Obliquely propagating electron acoustic shock waves in plasma with stationary ions, cold and superthermal hot electrons are investigated in magnetized plasma. Employing reductive perturbation method, Korteweg-de Vries-Burgers equation (KdVB) is derived in the small amplitude approximation limit. The analytical and numerical calculations of the KdVB equation show the variation of shock waves structure (amplitude, velocity, and width) with different plasma parameters. Particle density (α), superthermal parameter (κ), electron temperature ratio (??), kinetic viscosity (η0), obliqueness (kz), and strength of magnetic field (ωc) significantly modify the properties of the shock waves structures. The present investigation is useful to understand dissipative structures observed in space or laboratory plasma where multielectrons population with superthermal electrons are prevalent.  相似文献   

18.
A new passive TE/TM-mode polarization filter for an InP system based on an asymmetric twin waveguide and resonant coupling is investigated. Linear taper sections with different taper angles are introduced to couple between the two vertically separated waveguides. The underlying waveguide is designed to enable direct edge coupling from an optical fiber. At a wavelength of 1.55?μm power extinction ratios of 20 dB for the TE- and more than 10 dB for the TM-polarization are reported for devices shorter than 400?μm. An increased extinction ratio can be obtained by concatenating structures. Furthermore, we show this concept can be expanded to a polarization splitter.  相似文献   

19.
This paper introduces an innovative method to control and select transverse mode pattern in a He-Ne laser. The cat’s eye cavity is established by using a cat’s eye reflector as the reflecting mirror. Laser transverse mode pattern varies continuously when the distance between the convex lens and the concave mirror is changed, which form the cat’s eye reflector. By Newton-Cotes method, the numerical solution of two-dimensional diffraction integral equation in the cat’s eye cavity is obtained, the laser operating modes under various parameters are analyzed, and the eigenvalue ηmn and diffraction power loss corresponding with every transverse mode are calculated. The parameters assuring fundamental transverse mode output are figured out, which match the experiment results well. Therefore, a new convenient real-time means for the control and selection of the laser transverse mode is realized.  相似文献   

20.
We study guided modes propagating along a dielectric slab waveguide with a left handed material (LHM) cover or substrate. The dispersion relation is derived by using normalized waveguide parameters. An analytical method is then proposed to calculate the universal dispersion curves. Different from a slab waveguide with a LHM core, we find that guidance properties are strongly dependent on dielectric permittivity ε and magnetic permeability μ of the substrate and cover layers. For oscillating guided modes, fundamental zero order mode is not always absence, sometimes it exists in a restricted range of normalized propagation constant. First order mode behaves as other higher order modes and exists up to infinite high frequency. Higher order modes have no double degeneracy in the case of LHM cover layer. For surface guided modes, the existence and the type of the mode solutions with respect to different parameters are classified systematically and discussed in detail. Unlike a slab waveguide with a LHM core where the dispersion curve of TE1 surface mode continues with that of oscillating TE1 mode, the dispersion curve of TE1 surface mode continues with that of oscillating TE0 mode. It seems that the two different kinds of modes compensate each other to form one whole mode. Both TE and TM guided modes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号