首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用密度泛函理论的M06和MN15方法,研究了两个S型α-丙氨酸分子(S-α-Ala1和S-α-Ala2)与Fe2+的配合物S-A1和S-A2的手性转变.研究发现:S-A1的手性转变可通过以氧、氮、铁、氧与氮联合以及氧与甲基碳联合为桥的氢迁移实现.S-A2的手性转变可通过打开螯合环接S-A1的异构实现,还可打开螯合环通过以氧、铁及氧与甲基碳联合为桥的氢迁移实现;还可通过羧基内氢迁移后,以羰基氧及羰基氧和甲基碳联合为桥的氢迁移实现.势能面计算表明:以铁为氢负离子迁移桥梁的S-A1和S-A2手性转变反应具有优势,活化自由能垒分别是235.0和204.4kJ·mol-1左右.结果表明:α-Ala·Fe2+配合物可以很好地保持其手性特征.  相似文献   

2.
3.
采用密度泛函理论的M06-2X方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性α-丙氨酸与二价钙配合物(S-Ala·Ca2+)的旋光异构.研究发现:S-Ala·Ca2+的旋光异构有a、b和c3个通道,a是α-氢迁移到羰基氧后,质子再从质子化氨基迁移到α-碳;b是质子只以羰基氧为桥迁移;c是质子从质子化氨基迁...  相似文献   

4.
采用密度泛函理论的M06-2X方法结合自洽反应场理论的SMD模型方法,研究了水液相下两性α-Ala(丙氨酸)与Mg2+配合物的旋光异构.研究发现:α-Ala·Mg2+的旋光异构反应有3个通道a、b和c,a是质子分别以羰基氧和氨基氮为桥迁移;b是质子只以羰基氧为桥迁移;c是质子从质子化氨基迁移到羰基氧后,再以氨基氮为桥迁移.势能面计算表明:隐性水溶剂效应作用下α-Ala·Mg2+旋光异构的c通道具有优势,决速步能垒是218.1kJ·mol-1,a和b通道处于劣势,具有共同的决速步能垒297.1kJ·mol-1.水分子(簇)的作用使c通道的决速步能垒降到143.0kJ·mol-1,a和b通道的决速步能垒降到148.7kJ·mol-1.结果表明:水液相环境下α-Ala·Mg2+可以较好地保持其手性特征,α-丙氨酸二价镁盐用于生命体镁和丙氨酸同补具有很好的安全性.  相似文献   

5.
采用密度泛函理论的M06-2X方法,结合自洽反应场理论的SMD模型方法,研究了水液相下两性S型α-丙氨酸与一价钾离子配合物(S-α-Ala·K+)的旋光异构.反应通道研究发现:S-α-Ala·K+旋光异构反应有a、b和c 3个通道,a是质子只以羰基氧为桥迁移;b是α-氢迁移到羰基氧后,质子再从质子化氨基向α-碳迁移;c...  相似文献   

6.
采用密度泛函理论的M06方法研究了气相环境下K+催化丙氨酸(Ala)分子手性对映体转变反应.反应通道研究发现:Ala稳定构型1的手性转变有a、b、c和d 4个通道,a通道是羧羟基氢向氨基迁移后α-氢以羰基氧为桥迁移,b通道是羧羟基氢向氨基迁移后α-氢向羰基氧迁移再接质子从氨基向α-碳迁移,c通道和d通道是α-氢分别以氨基氮和羰基氧为桥迁移;Ala稳定构型2的手性转变有a和b 2个通道,a通道是α-氢只以羰基氧为桥迁移,b通道是α-氢迁移到羰基氧后氨基的质子再向α-碳迁移.势能面计算表明:构型1手性转变的优势通道是a和b,反应的表观能垒是159.4kJ/mol;构型2手性转变的优势通道是a,反应的表观能垒是235.8kJ/mol.结果表明:气相环境下K+的催化可显著降低Ala手性转变反应的能垒.  相似文献   

7.
使用基于密度泛函理论B3LYP/6-31+g(d,p)水平上的计算,研究孤立条件下的α-丙氨酸分子手性转变过程.通过寻找包括过渡态和中间体的反应过程各极值点结构,绘制完整的α-丙氨酸分子手性转变路径反应势能面,并分析各极值点的几何和电子结构特性.结果表明:S型α-丙氨酸分子手性碳上的氢原子以羧基上的氧原子为桥梁,转移至手性碳原子的另一侧,实现了从S型到R型α-丙氨酸分子的手性转变;该路径有1个中间体和2个过渡态,最大的反应能垒为326.6kJ/mol,来源于第一个过渡态TS1.  相似文献   

8.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了标题反应.势能面计算表明:标题反应的决速步骤均为第2基元反应,决速步能垒来自于质子从手性碳向氨基氮转移的过渡态.甲醇溶剂环境下构象1和2手性转变决速步的吉布斯自由能垒分别为109.8 kJ·mol~(-1)和111.0 kJ·mol~(-1),比气相甲醇环境下的决速步能垒134.2 kJ·mol~(-1)和130.8 kJ·mol~(-1)均有明显降低,比水环境下的决速步能垒122.5 kJ·mol~(-1)也明显降低,比裸环境下的决速步能垒266.1 kJ·mol~(-1)大幅降低,比限域在SWBNNT(5,5)内的决速步能垒为201.1 kJ·mol~(-1)也显著降低.结果表明:甲醇分子簇对α-丙氨酸分子的手性转变具有明显的催化作用,甲醇溶剂效应对质子从手性碳向氨基氮的转移反应具有较好的助催化作用.  相似文献   

9.
水环境下α-丙氨酸分子手性的转变机制   总被引:1,自引:0,他引:1  
基于密度泛函理论考察水环境下α-丙氨酸分子手性转变机制,通过寻找水环境下α-丙氨酸手性转变过程过渡态及中间体等极值点的结构,绘制水环境下α-丙氨酸分子手性碳上氢原子转移及形成中间体异构过程的反应势能面.结果表明:与孤立条件的手性转变过程相比,以单个和两个水分子为桥梁的氢原子从手性碳向羰基氧转移过程的能垒从325.5kJ/mol分别降为200.6,173.0kJ/mol;氢原子从羰基氧再迁移到手性碳另一侧的能垒从229.2kJ/mol分别降为105.3,73.5kJ/mol.这是由于水分子在α-丙氨酸分子对映体手性转变过程中具有催化作用,即生命体内存在微量右旋丙氨酸的机制是水参与了左旋丙氨酸手性转变过程,降低了反应能垒所致.  相似文献   

10.
采用密度泛函理论的M06和MN15方法,研究了气相α-丙氨酸二价锌(α-Ala·Zn2+)配合物的2种稳定构型(两性的A_1和中性的A_2)的手性转变.研究发现,A_1可通过以氧为桥、氮为桥、锌为桥、氧与氮联合为桥以及氧与甲基碳联合为桥等多种途径进行氢迁移,实现手性转变;A_2可通过以氧为桥进行氢迁移,实现手性转变,还可以打开螯合环向A_1异构,按A_1手性转变的多种途径实现手性转变.势能面研究表明,A_1以锌为桥进行氢迁移的手性转变反应具有优势,活化自由能垒是197.2 kJ·mol~(-1),A_2打开螯合环向A_1异构后,再以锌为桥进行氢迁移的手性转变反应具有优势,活化自由能垒是228.7 kJ·mol~(-1).结果表明:气相丙氨酸锌可以很好地保持其手性特征.  相似文献   

11.
用量子化学ONIOM(B3LYP/6-31++g*:UFF)方法,考察扶椅型单壁碳纳米管SWCNT(5,5),(6,6),(7,7)、锯齿型SWCNT(9,0),(10,0),(11,0)和螺旋型SWCNT(8,2),(8,3),(8,4),(9,1),(9,2),(9,3)中的α-Ala分子结构和手性转变机制.结果表明:与单体相比,当α-Ala分子限域在直径小的SWCNT中时,其C—C—C键角、C—C—N—C二面角和H—N—H键角增加较大,其他结构参数值略有增减;只存在H先在羧基内转移,手性碳上的H再以羰基11O为桥梁转移的反应通道;当α-Ala分子限域在SWCNT(5,5),(9,0),(8,2),(9,1)中时,羧基内H转移和H从手性碳转移到羰基的能垒较低;α-Ala分子限域在SWCNT中的H转移反应能垒随管径的减小而降低;不同手性的SWCNT对H转移反应能垒影响较小.  相似文献   

12.
用密度泛函理论(DFT/BLYP)在6-31G基组水平上研究了金属原子-苯与离子-苯配合物的气相电子转移过程,得到了M(Li,Na,Mg)-C6H6和M^+-C6H6络合物以及它们之间电子转移过程中的先驱络合物的最优几何构型和电子结构。同时利用线性坐标确定了过渡态的结构。结果表明:DET方法计算得到的单体即原子(离子)-苯的构型同MP2结果较为一致。通过分析过渡态及单体的原子上的电荷分布,对电子转  相似文献   

13.
采用密度泛函理论的B3LYP方法,微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种稳定构型谷氨酸分子的手性转变及水溶剂化效应.结果表明:构型1的优势通道为通道a和通道b,决速步骤自由能垒分别为242.3,245.7kJ/mol;构型2的优势通道为通道a,决速步骤自由能垒为243.5kJ/mol;决速步骤能垒均由质子从手性C向氨基N迁移的过渡态产生;水溶剂化效应使构型1的优势通道决速步骤自由能垒降至101.5kJ/mol;决速步骤的反应速率常数在298.15K时为1.002×10~(-5)s~(-1),在310.00K时为3.802×10~(-5)s~(-1).可见谷氨酸分子在生命体内富水环境下可缓慢地实现旋光异构.  相似文献   

14.
金属-苯配合物的密度泛函理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论 (DFT/BLYP)在 6 - 31G基组水平上研究了金属原子 -苯与离子 -苯配合物的气相电子转移过程 ,得到了M(Li,Na,Mg) -C6H6和M -C6H6络合物以及它们之间电子转移过程中的先驱络合物的最优几何构型和电子结构 .同时利用线性坐标确定了过渡态的结构 .结果表明 :DET方法计算得到的单体即原子 (离子 ) -苯的构型同MP2结果较为一致 .通过分析过渡态及单体的原子上的电荷分布 ,对电子转移的反应机理进行了探讨 ,给出了反应活化能及电子转移反应的耦合矩阵元 ,并进一步计算出了反应的速率常数  相似文献   

15.
该文采用密度泛函理论(DFT)的M06-2X方法和MN15方法,结合处理溶剂效应的SMD模型方法,研究在水溶液环境下赖氨酸钠配合物(Lys·Na+)的手性转变.研究结果发现:Lys·Na+的手性转变反应可在3个通道上实现,它们分别是α-H以羰基O为桥迁移、α-H迁移到羰基O后氨基N上的H再向α-C迁移以及α-H以氨基N为桥迁移.计算结果表明:α-H以氨基N为桥迁移的反应通道最具优势,在隐性水溶剂效应下该通道的自由能垒为221.6 kJ·mol-1,水簇的作用使该能垒降为115.6~119.0 kJ·mol-1.研究结果表明:Lys·Na+在水溶液环境下的手性转变很缓慢,其用于生命体同补赖氨酸和钠离子比较安全.  相似文献   

16.
用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究了α-Ala限域在SWCNT(12,6)与水复合环境的手性转变.分子结构计算表明:反应物S型α-Ala在SWCNT(12,6)和水的复合环境与单体相比,氢转移需要断的O—H键长都略长,氢转移的H与其要转到的目标原子O的距离均短很多.中间体在SWCNT(12,6)和水的复合环境下与单体相比,涉及到氢转移的C—H键略长;涉及到氢转移的H和O的距离都短.反应通道研究发现:α-Ala在SWCNT(12,6)与水复合环境下,手性转变反应有4条路径,每条路径上的氢转移都能以1个或2个水分子为媒介实现.势能面计算发现:各反应路径上的最高能垒均来自氢从手性碳向羰基氧转移的过渡态.最高能垒的最小值在氨基先异构接着羧基氢转移的路径,并以2H2O为氢转移媒介,能垒为100.3kJ·mol-1.比α-Ala在SWCNT(9,9)与水复合环境手性转变过程最高能垒的最低值154.3kJ·mol-1明显降低.结果表明:对于α-Ala的手性转变反应,螺手性SWCNT是比扶椅型SWCNT更好的纳米反应器.  相似文献   

17.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法和自洽反应场(SCRF)理论的smd模型方法,研究了2种最稳定构型的精氨酸分子的手性转变机理及水溶剂化效应.研究发现标题反应有3条通道a、b和c.对于构型1,分别是手性碳上的质子以氨基、羰基和氨基联合以及羧基和氨基联合为桥迁移.对于构型2,分别是手性碳上的质子只以氨基为桥、羧基异构后再以氨基为桥迁移及以羧基和氨基联合作桥迁移.势能面计算表明:构型1的主反应通道都是a,决速步自由能垒分别为268.2kJ·mol~(-1),来源于质子从手性碳向氨基氮迁移的过渡态.构型2的主反应通道是b,决速步自由能垒为239.3kJ·mol~(-1),来源于质子从手性碳向氨基氮迁移的过渡态.水溶剂效应使构型2的主反应通道决速步自由能垒降到95.7kJ·mol~(-1).结果表明:随着温度的升高,构型2先手性转变;水溶剂对精氨酸的手性转变有极好的催化作用.  相似文献   

18.
采用密度泛函理论的B3LYP方法、微扰理论的MP2方法及自洽反应场(SCRF)理论的SMD模型方法,研究两种最稳定构型色氨酸分子手性转变的反应机理及水溶剂化效应.结果表明:两种构型的色氨酸分子均有3条手性转变通道a,b,c;构型1的主反应通道为通道a,决速步骤自由能垒为256.7kJ/mol,构型2的主反应通道为通道a和c,决速步骤自由能垒分别为258.8,256.7kJ/mol,决速步骤能垒均来自于质子从手性C向氨基N迁移的过渡态;水溶剂效应使构型1的主反应通道决速步骤能垒降至113.4kJ/mol;单体色氨酸分子具有稳定性,水溶剂环境下色氨酸分子的手性转变可以缓慢进行.  相似文献   

19.
采用量子力学与分子力学相结合的ONIOM方法,研究了α-丙氨酸限域在MOR分子筛12元环孔道内的手性转变.反应通道研究发现:手性转变反应有a,b和c 3个通道.a通道上,手性C上的H以氨基N作为迁移桥梁;b通道上,手性C上的H先后以羰基O和氨基N作为迁移桥梁;c通道上,先是在羧基内实现H迁移,而后手性C上的H再以羰基O为桥梁迁移,进而实现手性转变.反应势能面计算发现:相对于孤立环境,α-Ala限域在MOR分子筛12元环孔道,在各通道的手性转变能垒被不同程度地降低.在c通道,羧基内H迁移和手性C上的H向羰基迁移的能垒分别为124.4和298.2 kJ·mol-1,比单体此过程的能垒195.1和316.5kJ·mol-1明显降低.结果表明:MOR分子筛12元环孔道对α-Ala的手性转变反应具有催化作用,对羧基内H迁移反应的限域催化作用明显.  相似文献   

20.
用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的O-H和C-H键都略长,H与其要转移到的目标原子O的距离均短很多。反应通道研究发现:在SWBNNT(9,9)与水复合环境下,α-Ala手性转变有4条路径,每条路径上氢转移都能以1个或2个水分子为媒介实现。势能面计算发现:手性转变反应的最高能垒来自H从手性C向羰基O转移的过渡态;在氨基先异构接着羧基H转移和H从手性C向羰基O转移顺次实现的路径,并以2H2O为氢转移媒介时最高能垒被降到最小值153.8 k J·mol-1。比只在SWBNNT(9,9)内的302.7 k J·mol-1明显降低,比只在水环境的167.8 k J·mol-1也有所降低。结果表明:SWBNNT(9,9)与水复合环境,对α-Ala手性转变有较好的催化作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号