首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity. While for linear elasticity the positive answer is clear, we exhibit, through detailed calculations, an example with inhomogeneous continuous deformation but constant Cauchy stress. The example is derived from a non rank-one convex elastic energy.  相似文献   

2.
A closed-form asymptotic solution is provided for velocity fields and the nominal stress rates near the tip of a stationary crack in a homogeneously pre-stressed configuration of a nonlinear elastic, incompressible material. In particular, a biaxial pre-stress is assumed with stress axes parallel and orthogonal to the crack faces. Two boundary conditions are considered on the crack faces, namely a constant pressure or a constant dead loading, both preserving an homogeneous ground state. Starting from this configuration, small superimposed Mode I or Mode II deformations are solved, in the framework of Biot's incremental theory of elasticity. In this way a definition of an incremental stress intensity factor is introduced, slightly different for pressure or dead loading conditions on crack faces. Specific examples are finally developed for various hyperelastic materials, including the J2-deformation theory of plasticity. The presence of pre-stress is shown to strongly influence the angular variation of the asymptotic crack-tip fields, even if the nominal stress rate displays a square root singularity as in the infinitesimal theory. Relationships between the solution with shear band formation at the crack tip and instability of the crack surfaces are given in evidence.  相似文献   

3.
The paper studies the stress rupture behavior of a reinforced viscoelastic composite through which a penny-shaped mode I crack propagates under a constant load. The composite has hexagonal symmetry and consists of elastic isotropic fibers and viscoelastic isotropic matrix. The material is modeled as a transversely isotropic homogeneous viscoelastic medium with effective characteristics. The crack is in the isotropy plane. The ring-shaped fracture process zone at the crack front is modeled by a modified Dugdale zone with time-dependent stresses. The viscoelastic properties of the matrix are characterized using a resolvent integral operator. Use is made of Volterra's principle, the method of operator continued fractions, and the theory of precritical crack growth in viscoelastic bodies. The problem is reduced to nonlinear integral equations. Numerical results are obtained for certain components of the composite, constant volume fractions, and different fracture strengths Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 45–51, August 2008.  相似文献   

4.
Considered is the long-term cracking of the three-dimensional fiber-reinforced viscoelastic composite with a plane penny-shaped crack under time-dependent loading. The composite has a hexagonal structure and consists of elastic isotropic fibers and viscoelastic isotropic matrix. The material is modeled by transversally isotropic homogeneous linearly viscoelastic medium with some averaged characteristics. The crack propagation planecoincides with the plane of isotropy. A ring-shaped yield zone in front of the moving crack is modeled as a Dugdale's zone with time-dependent stresses. Crack growth under deformation of the composite occurs by application of a slowly increasing tensile load; it is normal to the plane of crack propagation. A convolution-type time operator describes the viscoelastic properties of the matrix material. Use is made of the Volterra principle and the theory of long-term cracking of viscoelastic bodies. The irrational function of integral operator associated with the viscoelastic crack opening expression is expanded into a continued fraction of operators. The solution is reduced to the nonlinear integral equations of crack growth. Numerical results are obtained for a specific material. Crack growth kinetics is discussed in connection with the onset of stable crack growth and crack border stress intensity factor.  相似文献   

5.
The purpose of this research is to investigate the effects of material inhomogeneity on the response of linearly elastic isotropic hollow circular cylinders or disks under uniform internal or external pressure. The work is motivated by the recent research activity on functionally graded materials (FGMs), i.e., materials with spatially varying properties tailored to satisfy particular engineering applications. The analog of the classic Lamé problem for a pressurized homogeneous isotropic hollow circular cylinder or disk is considered. The special case of a body with Young"s modulus depending on the radial coordinate only, and with constant Poisson"s ratio, is examined. It is shown that the stress response of the inhomogeneous cylinder (or disk) is significantly different from that of the homogeneous body. For example, the maximum hoop stress does not, in general, occur on the inner surface in contrast with the situation for the homogeneous material. The results are illustrated using a specific radially inhomogeneous material model for which explicit exact solutions are obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The effect of a thin isotropic coating on the edge effect zone in a representative element of a coated material is examined. Isotropic and transversely isotropic materials are considered. The transversely isotropic material has the elastic properties of unidirectional glass-fiber-reinforced plastic. The decay of the edge effect in the directions perpendicular to the coating plane and to the plane of isotropy is studied. A boundary-value problem of elasticity for piecewise-homogeneouse orthotropic bodies and a quantitative edge effect decay criterion for normal stresses are used as a design model. The problem is solved using the finite-difference method and base schemes. The results of evaluation of the edge effect zone in homogeneous and inhomogeneous materials are presented. It is shown that the presence of a thin isotropic coating blocks the edge effect, that is, decreases the edge effect zone in both isotropic and transversely isotropic materials __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 12, pp. 61–67, December 2007.  相似文献   

7.
All real bodies are inhomogeneous, though in many such bodies the inhomogeneity is “mild” in that the response of the bodies can be “approximated” well by the response of a homogeneous approximation. In this study we explore the status of such approximations when one is concerned with bodies whose response is nonlinear. We find that significant departures in response can occur between that of a “mildly” inhomogeneous body and its homogeneous approximation (if the approximate model is restricted to a certain class), both quantitatively and qualitatively. We illustrate this fact within the context of a specific boundary value problem, the inflation of an inhomogeneous spherical shell. We also discuss the inappropriateness of homogenization procedures that lead to a homogenized stored energy for the body when in fact what is required is a homogenized model that predicts the appropriate stresses as they invariably determine the failure or integrity of the body.  相似文献   

8.
Anti-plane dynamic fracture analysis is presented for functionally graded materials (FGM) with arbitrary spatial variations of material properties. The FGM with the material properties varying continuously in an arbitrary manner is modeled as a multi-layered medium with the elastic modulus and mass density varying linearly in each sub-layer and continuous at the interfaces between two adjacent sub-layers. With this linearly inhomogeneous multi-layered model, the problem of a crack in a graded interfacial zone bonded to two homogeneous half-spaces or in a coating bonded to a homogeneous half-space subjected to the anti-plane shear impact load is investigated. Laplace and Fourier transforms and transfer matrix are applied to reduce the associated mixed boundary value problem to a Cauchy singular integral equation which is solved numerically in the Laplace transformed domain. The dynamic stress intensity factors (DSIF) are obtained by using the numerical technique of Laplace inversion.  相似文献   

9.
The stored energy functional of a homogeneous isotropic elastic body is invariant with respect to translation and rotation of a reference configuration. One can use Noether's Theorem to derive the conservation laws corresponding to these invariant transformations. These conservation laws provide an alternative way of formulating the system of equations governing equilibrium of a homogeneous isotropic body. The resulting system is mathematically identical to the system of equilibrium equations and constitutive relations, generally, of another material. This implies that each solution of the system of equilibrium equations gives rise to another solution, which describes the reciprocal deformation and solves the system of equilibrium equations of another material. In this paper we derive conservation laws and prove the theorem on conjugate solutions for two models of elastic homogeneous isotropic bodies – the model of a simple material and the model of a material with couple stress (Cosserat continuum). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The purpose of this research is to investigate the effects of material inhomogeneity on the response of linearly elastic isotropic solid circular disks or cylinders, rotating at constant angular velocity about a central axis. The work is motivated by the recent research activity on functionally graded materials (FGMs), i.e., materials with spatially varying properties tailored to satisfy particular engineering applications. The analog of the classic problem for a homogeneous isotropic rotating solid disk or cylinder is considered. The special case of a body with Young"s modulus depending on the radial coordinate only, and with constant Poisson"s ratio, is examined. For the case when the Young"s modulus has a power-law dependence on the radial coordinate, explicit exact solutions are obtained. It is shown that the stress response of the inhomogeneous disk (or cylinder) is significantly different from that of the homogeneous body. For example, the maximum radial and hoop stresses do not, in general, occur at the center as in the case for the homogeneous material. Furthermore, for the case where the Young"s modulus increases with radial distance from the center, it is shown that radially symmetric solutions exist provided the rate of growth of the Young"s modulus is, at most, cubic in the radial variable. It is also shown for the general inhomogeneous isotropic case how the material inhomogeneity may be tailored so that the radial and hoop stress are identical throughout the disk. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
For homogeneous, isotropic, non-linearly elastic materials, the form of the homogeneous deformation consistent with the application of a Cauchy shear stress is derived here for both compressible and incompressible materials. It is shown that this deformation is not simple shear, in contrast to the situation in linear elasticity. Instead, it consists of a triaxial stretch superposed on a classical simple shear deformation, for which the amount of shear cannot be greater than 1. In other words, the faces of a cubic block cannot be slanted by an angle greater than 45° by the application of a pure shear stress alone. The results are illustrated for those materials for which the strain-energy function does not depend on the principal second invariant of strain. For the case of a block deformed into a parallelepiped, the tractions on the inclined faces necessary to maintain the derived deformation are calculated.  相似文献   

12.
13.
In this paper, we consider the axisymmetric problem of a frictionless receding contact between an elastic functionally graded layer and a homogeneous half-space, when the two bodies are pressed together. The graded layer is modeled as a nonhomogeneous medium with an isotropic stress–strain law and is subjected over a part of its top surface to normal tractions while the rest of it is free of tractions. Since the contact between the two bodies is assumed to be frictionless, then only compressive normal tractions can be transmitted in the contact area. Using Hankel transform, the axisymmetric elasticity equations are converted analytically into a singular integral equation in which the unknowns are the contact pressure and the receding contact radius. The global equilibrium condition of the layer is supplemented to solve the problem. The singular integral equation is solved numerically using orthogonal Chebychev polynomials and an iterative scheme is employed to obtain the correct receding contact length that satisfies the global equilibrium condition. The main objective of the paper is to study the effect of the material nonhomogeneity parameter and the thickness of the graded layer on the contact pressure and on the length of the receding contact.  相似文献   

14.
15.
The motion of a double planet in the gravitational force field of a massive planet modeled by a viscoelastic body is studied. The double planet is modeled by a viscoelastic body and a material point. These viscoelastic bodies are homogeneous, isotropic and, in their natural undeformed state, occupy spherical regions in the three-dimensional Euclidean space. The problem is solved in the framework of a linear model in the theory of viscoelasticity. The motion separation method and the averaging method are applied to derive an approximate system of equations describing the evolution of translationalrotational motion for the mechanical system under study. The Earth-Moon system is considered in the gravitational field of the Sun as an example of a double planet.  相似文献   

16.
It is shown that the equilibrium states of Cauchy stress which can exist, in the absence of body force, in every incompressible, homogeneous, isotropic, elastic solid whose deviatoric stress range allows them, must have uniform deviatoric stress invariants. There is at least one such non-uniform stress state. The related problem for incompressible non-Newtonian fluids is also discussed.  相似文献   

17.
Small amplitude inhomogeneous plane waves are studied as they propagate on the free surface of a predeformed semi-infinite body made of Bell constrained material. The predeformation corresponds to a finite static pure homogeneous strain. The surface wave propagates in a principal direction of strain and is attenuated in another principal direction, orthogonal to the free surface. For these waves, the secular equation giving the speed of propagation is established by the method of first integrals. This equation is not the same as the secular equation for incompressible half-spaces, even though the Bell constraint and the incompressibility constraint coincide in the isotropic infinitesimal limit.  相似文献   

18.
On the basis of the nonlinear theory of elasticity, the general constitutive equation for an isotropic hyperelastic solid in the presence of initial stress is derived. This derivation involves invariants that couple the deformation with the initial stress and in general, for a compressible material, it requires 10 invariants, reducing to 9 for an incompressible material. Expressions for the Cauchy and nominal stress tensors in a finitely deformed configuration are given along with the elasticity tensor and its specialization to the initially stressed undeformed configuration. The equations governing infinitesimal motions superimposed on a finite deformation are then used to study the combined effects of initial stress and finite deformation on the propagation of homogeneous plane waves in a homogeneously deformed and initially stressed solid of infinite extent. This general framework allows for various different specializations, which make contact with earlier works. In particular, connections with results derived within Biot's classical theory are highlighted. The general results are also specialized to the case of a small initial stress and a small pre-deformation, i.e. to the evaluation of the acoustoelastic effect. Here the formulas derived for the wave speeds cover the case of a second-order elastic solid without initial stress and subject to a uniaxial tension [Hughes and Kelly, Phys. Rev. 92 (1953) 1145] and are consistent with results for an undeformed solid subject to a residual stress [Man and Lu, J. Elasticity 17 (1987) 159]. These formulas provide a basis for acoustic evaluation of the second- and third-order elasticity constants and of the residual stresses. The results are further illustrated in respect of a prototype model of nonlinear elasticity with initial stress, allowing for both finite deformation and nonlinear dependence on the initial stress.  相似文献   

19.
A constitutive model for creep deformation that describes the loading-history-dependent behavior of initially isotropic materials with different properties in tension and compression under stress vector rotations limited by 50–60° is presented within a thermodynamic framework. In the proposed constitutive model a kinematic hardening rule is adopted. This model also introduces an effective equivalent stress in the creep potential that is based on the first and second invariants of the effective stress tensor, and on the joint invariant of the effective stress tensor and eigenvector associated with the maximum principal Cauchy stress. The formulation of the kinematic hardening rule is presented and discussed. All the material parameters in the model have been obtained from a series of proposed basic experiments with constant stresses. These model parameters are then used to predict the creep deformation of the aluminum alloy under multiaxial loading with constant stresses, and under non-proportional uniaxial and non-proportional multiaxial loadings for both isothermal and nonisothermal processes.  相似文献   

20.
A problem of an elastic isotropic medium with a system of foreign (transverse with respect to crack alignment) rectilinear inclusions is considered. The medium is assumed to be attenuated by a periodic system of rectilinear cracks with zones where the crack faces interact with each other. These zones are assumed to be adjacent to the crack tips, and their sizes can be commensurable with the crack size. Interaction between the crack faces in the tip zone is modeled by introducing bonds (adhesion forces) between the cracks with a specified strain diagram. The boundary-value problem of the equilibrium of a periodic system of cracks with bonds between their faces under the action of external tensile loads and forces in the bonds is reduced to a nonlinear singular integrodifferential equation with a kernel of the Cauchy kernel type. The condition of critical equilibrium of the cracks with the tip zones is formulated with allowance for the criterion of critical tension of the bonds. A case of a stress state of the medium containing zones where the crack faces interact with each other is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号