首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional multiple-slip dislocation-density based crystalline formulation, specialized finite-element formulations, and specialized Voronoi tessellations adapted to martensitic orientations, were used to investigate shear-strain localization, and dislocation-density evolution in martensitic microstructures under dynamic compressive loading conditions. The formulation is based on accounting for variant morphologies and orientations, secondary-phase structures, and initial dislocations-densities that are uniquely inherent to martensitic microstructures. The effects of strain rate and inclusions on the evolution of shear-strain localization were investigated. The analysis indicates that variant morphology and orientations have a direct consequence on dislocation-density accumulation and inelastic localization in martensitic microstructures, and that lath directions, orientations, and arrangements are critical characteristics of high-strength martensitic dynamic behavior. It is shown that tensile hydrostatic pressure due to the unloading of the plastic waves at the free boundary and extensive shear-strain accumulation occurs at certain triple junctions. Furthermore, plastic shear-slip accumulation between inclusions and the surrounding martensitic matrix results in shear-strain localization and increases in the tensile hydrostatic pressure at critical locations, such as trip junctions.  相似文献   

2.
A stress assisted hydrogen diffusion transport model, a dislocation-density-based multiple-slip crystalline plasticity formulation, and an overlapping fracture method were used to investigate hydrogen diffusion and embrittlement in lath martensitic steels with distributions of M23C6 carbide precipitates. The formulation accounts for variant morphologies based on orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures. The interrelated effects of martensitic block and packet boundaries and carbide precipitates on hydrogen diffusion, hydrogen assisted crack nucleation and growth, are analyzed to characterize the competition between cleavage fracture and hydrogen diffusion assisted fracture along preferential microstructural fracture planes. Stresses along the three cleavage planes and the six hydrogen embrittlement fracture planes are monitored, such that crack nucleation and growth can nucleate along energetically favorable planes. High pressure gradients result in the accumulation of hydrogen, which embrittles martensite, and results in crack nucleation and growth along {110} planes. Cleavage fracture occurs along {100} planes when there is no significant hydrogen diffusion. The predictions indicate that hydrogen diffusion can suppress the emission and accumulation of dislocation density, and lead to fracture with low plastic strains.  相似文献   

3.
A dislocation-density grain–boundary interaction scheme has been developed to account for the interrelated dislocation-density interactions of emission, absorption and transmission in GB regions. The GB scheme is based on slip-system compatibility, local resolved shear stresses, and immobile and mobile dislocation-density accumulation at critical GB locations. To accurately represent dislocation-density evolution, a conservation law for dislocation-densities is used to balance dislocation-density absorption, transmission and emission from the GB. The behavior of f.c.c. polycrystalline copper, with different random low and high angle GBs, are investigated for different crack lengths. For aggregates with random low angle GBs, dislocation-density transmission dominates at the GBs, which can indicate that the low angle GB will not significantly change crack growth directions. For aggregates with random high angle GBs, extensive dislocation-density absorption and pile-ups occur. The high stresses associated with this behavior, along the GBs, can result in intergranular crack growth due to potential crack nucleation sites in the GB.  相似文献   

4.
本文针对奥氏体-马氏体双相材料,研究裂纹尖端区弥散分布的奥氏体颗粒在应变诱发时发生的相变对裂纹的屏蔽效应。鉴于实验中已发现的不同相变滞后对裂纹屏蔽效应的不同影响,本研究通过在裂纹尖端区不同位置嵌入相变颗粒,考虑到裂纹尖端区应力应变场的奇异分布及其诱发的相变,将裂纹尖端区相变滞后问题转化为相变颗粒在裂纹尖端区的位置问题。计及奥氏体-马氏体相变的体积膨胀效应进行了平面应力裂纹问题数值模拟,得到了单个相变夹杂对裂纹屏蔽效应的影响规律。结果表明:裂纹尖端区相变夹杂的位置对裂纹的屏蔽效应在距裂尖2倍夹杂直径以内影响极大,且以裂尖86度方向为界。其影响规律与McMeeking 和 Evans理论预言的60度方向不同。  相似文献   

5.
We consider the problem of a semiinfinite through crack in an elastic plate, which starts suddenly under the application of a step load (mode-I). As the crack propagates, microfractures grow rapidly at a small distance ahead of the tip, releasing pressure pulses. This process of microfracture nucleation, pulse emission and subsequent coalescence with the main fracture front continues to occur during crack motion. We crudely simulate this process by employing a single point dilatational source that is situated ahead of the crack tip and moves in unison with it, emitting pulses periodically. The total wavefield is then due to the effect of this point source, as well as the scattering of the pulses by the crack front. We model this elastodynamic problem under the plane stress assumption. A closed form solution is developed for the in-plane displacements of the crack faces due to the scattered field. The surface wave contribution can be pulled out separately and is expected to be significant. In particular, the results are cast into a form that is readily amenable to numerical analysis. We will be presenting the numerical results in Part II of this two part paper.  相似文献   

6.
实验中观察到形状记忆合金在应力诱发马氏体相变过程中,出现多界面的微结构,马氏体相会逐渐长大变粗,同时会出现由马氏体形核造成的应力突然降低.用多阱的弹性能函数来刻画此相变与微结构演化过程,发现相变时会出现多界面的微结构且伴随着马氏体相的形核至奥氏体相的消失过程,出现了界面数先增后减的变化,同时应力会出现跳跃而不连续.相对应的动力学模型的有限差分的计算结果同样显示形核时出现了多界面的微结构并伴随着应力的大幅振荡,随着载荷的增加界面位置随之移动,使得马氏体相区域逐渐长大.理论分析与数值模拟的结果较好地刻画了实验中观察到的马氏体相变过程中的形核,产生多界面,再到马氏体逐渐长大这一微结构的演化过程.  相似文献   

7.
Nowadays, numerical simulation of 3D fatigue crack growth is easily handled using the eXtended Finite Element Method coupled with level set techniques. The finite element mesh does not need to conform to the crack geometry. Most difficulties associated to complex mesh generation around the crack and the re-meshing steps during the possible propagation are hence avoided. A 3D two-scale frictional contact fatigue crack model developed within the X-FEM framework is presented in this article. It allows the use of a refined discretization of the crack interface independent from the underlying finite element mesh and adapted to the frictional contact crack scale. A stabilized three-field weak formulation is also proposed to avoid possible oscillations in the local solution linked to the LBB condition when tangential slip is occurring. Two basic three-dimensional numerical examples are presented. They aim at illustrating the capacities and the high level of accuracy of the proposed X-FEM model. Stress intensity factors are computed along the crack front. Finally an experimental 3D ball/plate fretting fatigue test with running conditions inducing crack nucleation and propagation is modeled. 3D crack shapes defined from actual experimental ones and fretting loading cycle are considered. This latter numerical simulation demonstrates the model ability to deal with challenging actual complex problems and the possibility to achieve tribological fatigue prediction at a design stage based on the fatigue crack modeling.  相似文献   

8.
Phase-field simulations of the martensitic transformation (MT) in an austenitic matrix which has already undergone the plastic deformation are carried out. For this purpose the elasto-plastic phase-field approach of incoherent MT developed in a previous work [Kundin et al., 2011. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 59, 2082–2012] is used. The evolution equation for the dislocation density field is extended by taking into account the thermal and athermal annihilation of the dislocations in the austenitic matrix and the athermal annihilation at the transformation front. It is shown that the plastic deformation in the austenite caused by the MT interacts with the dislocation field and the MT front that leads to an inhomogeneous increasing of the total dislocation density. During the phase transformation one part of the dislocations in the austenite is inherited by the martensitic phase and this inheritance depends on the kinetics and the crystallography of MT. Another part of dislocations annihilates at the transformation front and decreases the dislocation density in the growing martensite. Based on the simulation results the specific type of phenomenological dependency between the inherited dislocations, the martensite phase fraction and the plastic deformation is proposed.  相似文献   

9.
Theoretical analysis of crack front instability in mode I+III   总被引:1,自引:0,他引:1  
This paper focusses on the theoretical prediction of the widely observed crack front instability in mode I+III, that causes both the crack surface and crack front to deviate from planar and straight shapes, respectively. This problem is addressed within the classical framework of fracture mechanics, where the crack front evolution is governed by conditions of constant energy-release-rate (Griffith criterion) and vanishing stress intensity factor of mode II (principle of local symmetry) along the front. The formulation of the linear stability problem for the evolution of small perturbations of the crack front exploits previous results of Movchan et al. (1998) (suitably extended) and Gao and Rice (1986), which are used to derive expressions for the variations of the stress intensity factors along the front resulting from both in-plane and out-of-plane perturbations. We find exact eigenmode solutions to this problem, which correspond to perturbations of the crack front that are shaped as elliptic helices with their axis coinciding with the unperturbed straight front and an amplitude exponentially growing or decaying along the propagation direction. Exponential growth corresponding to unstable propagation occurs when the ratio of the unperturbed mode III to mode I stress intensity factors exceeds some “threshold” depending on Poisson's ratio. Moreover, the growth rate of helical perturbations is inversely proportional to their wavelength along the front. This growth rate therefore diverges when this wavelength goes to zero, which emphasizes the need for some “regularization” of crack propagation laws at very short scales. This divergence also reveals an interesting similarity between crack front instability in mode I+III and well-known growth front instabilities of interfaces governed by a Laplacian or diffusion field.  相似文献   

10.
11.
Previous experiments have shown that stress-induced martensitic transformation in certain polycrystalline NiTi shape memory alloys can lead to strain localization and propagation phenomena when loaded in uniaxial tension. The number of nucleation events and kinetics of transformation fronts were found to be sensitive to the nature of the ambient media and imposed loading rate due to the release/absorption of latent heat and the material's inherent temperature sensitivity of the transformation stress. A special plasticity-based constitutive model used within a 3-D finite element framework has previously been shown to capture the isothermal, purely mechanical front features seen in experiments of thin uniaxial NiTi strips. This paper extends the approach to include the thermo-mechanical coupling of the material with its environment. The simulations successfully capture the nucleation and evolution of fronts and the corresponding temperature fields seen during the experiments.  相似文献   

12.
Motivated by experimental observations of H. Seiner et al., we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy stabilized as a single variant of martensite. In the experiments the nucleation process was induced by localized heating and it was observed that, regardless of where the localized heating was applied, the nucleation points were always located at one of the corners of the sample—a rectangular parallelepiped in the austenite. Using a simplified nonlinear elasticity model, we propose an explanation for the location of the nucleation points by showing that the martensite is a local minimizer of the energy with respect to localized variations in the interior, on faces and edges of the sample, but not at some corners, where a localized microstructure, involving austenite and a simple laminate of martensite, can lower the energy. The result for the interior, faces and edges is established by showing that the free-energy function satisfies a set of quasiconvexity conditions at the stabilized variant in the interior, faces and edges, respectively, provided the specimen is suitably cut.  相似文献   

13.
Previous experiments have shown that the distinct features of macro-martensitic band nucleation and propagation in micro-tube under tension are in three stages: the initiation and propagation of a single helical band  self-merging  propagation of the cylindrical band. In this paper, the martensitic formation and helical band propagation in the tube at different temperatures are modeled. The free energy function of the tube is formulated by introducing an equivalent method to calculate the stress and strain disturbances in the helical martensitic domain, and the phase transformation criterion is derived based on thermodynamics. The simulations successfully capture the main features of nucleation, pattern evolution and variation of front velocity of the helical martensitic band in the tube. The analytical results and the comparison with experiments are also discussed in this paper.  相似文献   

14.
Propagation behavior of an elliptical crack in thermopiezoelectric material subjected to a uniform temperature is investigated in this paper. The three-dimensional strain energy density formulation is used to determine the direction of crack propagation and the shape of the initial fracture increment. It is found that the elliptical crack grows coplanarly under this particular load case but not normal to the crack front. The elliptical crack tends to become a circular one when thermal loading is applied.  相似文献   

15.
Two distinct mechanisms of crack initiation and advance by void growth have been identified in the literature on the mechanics of ductile fracture. One is the interaction a single void with the crack tip characterizing initiation and the subsequent void by void advance of the tip. This mechanism is represented by the early model of Rice and Johnson and the subsequent more detailed numerical computations of McMeeking and coworkers on a single void interacting with a crack tip. The second mechanism involves the simultaneous interaction of multiple voids on the plane ahead of the crack tip both during initiation and in subsequent crack growth. This mechanism is revealed by models with an embedded fracture process zone, such as those developed by Tvergaard and Hutchinson. While both mechanisms are based on void nucleation, growth and coalescence, the inferences from them with regard to crack growth initiation and growth are quantitatively different. The present paper provides a formulation and numerical analysis of a two-dimensional plane strain model with multiple discrete voids located ahead of a pre-existing crack tip. At initial void volume fractions that are sufficiently low, initiation and growth is approximately represented by the void by void mechanism. At somewhat higher initial void volume fractions, a transition in behavior occurs whereby many voids ahead of the tip grow at comparable rates and their interaction determines initiation toughness and crack growth resistance. The study demonstrates that improvements to be expected in fracture toughness by reducing the population of second phase particles responsible for nucleating voids cannot be understood in terms of trends of one mechanism alone. The transition from one mechanism to the other must be taken into account.  相似文献   

16.
Recent experiments have evidenced the existence of a ductile fracture mode at the nanometer scale in Aluminosilicate glass. The present study is designed to check whether such a ductile mode is inherent to the amorphous nature of glass. Therefore, the slow crack advance is observed in real time via an Atomic Force Microscope in a minimal glass, amorphous Silica, under stress corrosion. In this case, the Crack propagation proceeds by the nucleation, growth and coalescence of damage cavities as in the Aluminosilicate glass, but the cavity size is significantly larger. We focus here on the kinematics of crack propagation by looking at the spatio-temporal evolution of both the tip of the main crack and the cavity ahead. It is shown that the velocity of the main crack tip is significantly lower than the one of the cavity edge toward the main crack tip, like in metallic alloys. Moreover, the velocities of the different fronts (main crack, frontward and backward cavity tips) at these nanometric scales is one order of magnitude smaller than the crack tip velocity at the continuum scale. This has important consequences for the modelling of stress corrosion, especially at ultra-slow crack propagation.  相似文献   

17.
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.  相似文献   

18.
We present a combined experimental–numerical study on fracture initiation at the convex surface and its propagation during bending of a class of ferritic–martensitic steel. On the experimental side, so-called free bending experiments are conducted on DP1000 steel sheets until fracture, realizing optical and scanning electron microscopy analyses on the post mortem specimens for fracture characterization. A blended Mode I – Mode II fracture pattern, which is driven by cavitation at non-metallic inclusions as well as martensitic islands and resultant softening-based intense strain localization, is observed. Phenomena like crack zig-zagging and crack alternation at the bend apex along the bending axis are introduced and discussed. On the numerical side, based on this physical motivation, the process is simulated in 2D plane strain and 3D, using Gurson’s dilatant plasticity model with a recent shear modification, strain-based void nucleation, and coalescence effects. The effect of certain material parameters (initial porosity, damage at coalescence and failure, shear modification term, etc.), plane strain constraint and mesh size on the localization and the fracture behavior are investigated in detail.  相似文献   

19.
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113–2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent ?1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.  相似文献   

20.
研究了低合金热轧钢16MnR缺口试样在$-196\,{^\circ}$C和$-130\,{^\circ}$C的解理断裂机 理. 拉伸试验、单、双缺口四点弯曲实验、断口形貌观察以及有限元分析结果表明, 缺口试 样发生解理断裂时均起裂于夹杂物粒子, 一种位于缺口根部前端(IC型), 另一种位于距缺口 根部较远的条形裂纹前端(SIC型); 且随温度升高, 起裂源的类型从$-196\,{^\circ}$C下的IC 型转变为$-130\,{^\circ}$C下的SIC型. 微裂纹均形核于夹杂物, 最终的断裂由铁素体晶粒尺 寸的微裂纹扩展控制. 缺口试样IC型解理断裂遵循裂纹形核条 件$\varepsilon_{\rm p} \ge \varepsilon_{\rm pc}$和裂纹扩展条件$\sigma_{yy} \ge \sigma_{f}$, 而SIC型解理断裂条件则演化为$\varepsilon_{\rm p}+\varepsilon_{\rm ps} \ge \varepsilon_{\rm pc}$和$\sigma_{yy} +\sigma_{yy{\rm s}} \ge \sigma_{f}$.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号