首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of InSe were prepared by thermal evaporation technique. The as-deposited films have nano-scale crystalline nature and the annealing enhanced the degree of crystallinity. The optical properties of nanocrystalline thin films of InSe were studied using spectrophotometric measurements of transmittance, T, and reflectance, R, at normal incidence of light in the wavelength range 200–2500 nm. The optical constants (refractive index, n, and absorption index, k) were calculated using a computer program based on Murmann's exact equations. The calculated optical constants are independent of the film thickness. The optical dispersion parameters have been analysed by single oscillator model. The type of transition in InSe films is indirect allowed with a value of energy gap equals to 1.10 eV, which increased to 1.23 eV upon annealing.  相似文献   

2.
Film characterization based on variable-angle spectroscopic ellipsometry (VASE) is desirable in order to understand physical and optical characteristics of thin films. A number of TiO2 film samples were prepared by ion-assisted electron-beam evaporation with 200-nm nominal thickness, 2.0 Å/s deposition rate and 8 sccm oxygen flow rate. The samples were maintained at 250 °C during the deposition, and annealed in air atmosphere afterwards. As-deposited and annealed films were analyzed by VASE, spectrophotoscopy and X-ray diffractometry. From ellipsometry modeling process, the triple-layer physical model and the Cody–Lorentz dispersion model offer the best results. The as-deposited films are inhomogeneous, with luminous transmittance and band gap of 62.37% and 2.95 eV. The 300 °C and 500 °C are transition temperatures toward anatase and rutile phases, respectively. Increasing temperature results in an increase of refractive index, transmittance percentage and band gap energy. At 500 °C, the highest refractive index and band gap energy are obtained at 2.62 and 3.26 eV, respectively. The developed VASE-modeling process should be able to characterize other TiO2 films, using similar physical and optical modeling considerations.  相似文献   

3.
Cadmium sulphide (CdS) thin films were prepared chemical bath deposition technique. The films were doped with copper using the direct method consisting in the addition of a copper salt in the deposition bath of CdS. The doped films were annealed in air, at 250, 300 and 350 °C, for 1 h. The deposition films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX) and optical properties of CdS thin films before and after Cu doping. XRD analysis shows that the films are polycrystalline in nature with cubic crystalline structure. The various parameters such as crystallite size, micro strain and dislocation density were evaluated. SEM study shows that the total substrate surface is well covered by uniformly distributed spherical shaped grains. Optical transmittance study shows the presence of direct transition with band gap energy decrease 2.5–2.2 eV.  相似文献   

4.
Assem Bakry  Ahmed M. El-Naggar 《Optik》2013,124(24):6501-6505
Phosphorus doped hydrogenated amorphous silicon (a-Si:H) films were prepared by decomposition of silane using RF plasma glow discharge. Both DC dark conductivity measurements, and spectrophotometric optical measurements through the range 200–3000 nm were recorded for the prepared films. The DC conductivity activation energy Ea decreased from 0.8 eV for the undoped sample to 0.34 eV for the highest used doping value. The optical energy gap Eg decreased ranging from 1.66 eV to 1.60 eV. The refractive index n, the density of charge carriers N/m* and the plasma frequency ωp showed an opposite behavior, i.e. an increase in value with doping. Fitting the dispersion values to Sellmeier equation led to the determination of the material natural frequency of oscillating particles. A correlation between the changes in these parameters with the doping has been attempted.  相似文献   

5.
The current density–voltage characteristics of pure and iodine doped plasma polymerized 2,6-diethylaniline (PPDEA) thin films of different thicknesses ranging from 150 to 450 nm with aluminum (Al)/PPDEA/Al structure have been investigated at room temperature. The direct current electrical conductivity has showed a higher value due to iodine doping of PPDEA thin film. In contrast to pure PPDEA thin films where the most probable conduction mechanism is electrode limited Schottky type, Poole–Frenkel (PF) conduction mechanism is found to be operative in iodine doped PPDEA thin films. The PF conduction mechanism in iodine doped PPDEA thin films may have generated due to the charge transfer complex formation through donor type monomer and acceptor type iodine. The presence of charge transfer complex is confirmed by a new absorption shoulder/peak in ultraviolet–visible spectrum of iodine doped PPDEA thin film.  相似文献   

6.
To investigate the effect of annealing on the structural and optical properties of a binary compound Ga5Se95, thin films of Ga5Se95 have been deposited on quartz substrates at room temperature by the thermal evaporation technique. X-ray diffraction patterns showed that the films before and after annealing at 573 K have polycrystalline texture and exhibit tetragonal structure. The dependences of the optical constants, the refractive index n and extinction coefficient k were studied in the spectral range of 200 nm to 2500 nm. The normal dispersion of the refractive index of the films could be described using the Wemple–DiDomenco single-oscillator model. Analysis of absorption index data reveals that as-deposited Ga5Se95 films has indirect transitions with optical energy gap of 1.685 eV.  相似文献   

7.
《Current Applied Physics》2010,10(4):1112-1116
Sb2S3 thin films prepared by electrodeposition on indium tin oxide coated glass substrate were irradiated with 150 MeV Ni11+ ions for various fluence in the range of 1011–1013 ions/cm2. The modifications in the structure, surface morphology and optical properties have been studied as a function of ion fluence. X-ray diffraction (XRD) analysis indicates a shift in the (2 4 0) peak position towards lower diffraction angle and a decrease in grain size with increase in ion fluence. Presence of microcracks due to irradiation induced grain splitting effect has been observed from the SEM micrograph at higher ion fluence. The optical absorbance spectrum revealed a shift in the fundamental absorption edge and the band gap energy increased from a value of 1.63 eV for as-deposited films to 1.80 eV for the films irradiated with 1013 ions/cm2.  相似文献   

8.
《Current Applied Physics》2009,9(5):1140-1145
Structural, electrical and optical properties of polyaniline (PAni) doped Bi2S3 composite thin films prepared by electrodeposition method are reported. X-ray diffraction pattern indicates its polycrystalline nature and crystallite size increases with increase in the concentration of PAni. FTIR studies reveal that the dopant PAni has affected the absorption phenomenon in the IR region of the Bi2S3 thin films. The optical band gap energy is found to be 1.91 eV for as-deposited Bi2S3 thin film and it decreases with increase in the concentration of PAni. The morphology of the doped films changes due to the addition of PAni. Electrical studies indicate that the conductivity increases with increase in the concentration of PAni. The conduction results from a hopping due to localized states in the temperature range 300–358 K. Above 358 K, the conduction process is explained by the traps at grain boundaries of partially depleted grains.  相似文献   

9.
Thin films of 4-tricyanovinyl-N,N-diethylaniline (TCVA) were prepared by thermal evaporation technique. The spectral and the optical parameters have been investigated by using the spectrophotometric measurements of both transmittance and reflectance at normal incidence of light in the wavelength range 200–2500 nm. The effect of γ-irradiation on the optical parameters was investigated. It was observed that the increase in γ-irradiation dose caused an increase in the value of absorption index and a shift in the spectrum towards higher wavelengths. Therefore, the value of the optical band gap has decreased from 1.45 eV for as-deposited film to 1.39 eV for film exposed to γ-ray dose of 150 kGy and Urbach tail increased. On the other hand, the dispersion parameters of TCVA films were increased with the increase of the irradiation dose.  相似文献   

10.
《Current Applied Physics》2010,10(3):790-796
CdO and Al-doped CdO nano-crystalline thin films have been prepared on glass at 300 °C substrate temperature by spray pyrolysis. The films are highly crystalline with grain size (18–32 nm) and found to be cubic structure with lattice constant averaged to 0.46877 nm. Al-doping increased the optical transmission of the film substantially. Direct band gap energy of CdO is 2.49 eV which decreased with increasing Al-doping. The refractive index and dielectric constant varies with photon energy and concentration of Al as well. The conductivity of un-doped CdO film shows metallic behavior at lower temperature region. This behavior dies out completely with doping of Al and exhibits semiconducting behavior for whole measured temperature range. Un-doped and Al-doped CdO is an n-type semiconductor having carrier concentration is of the order of ∼1021 cm−3, confirmed by Hall voltage and thermo-power measurements.  相似文献   

11.
Nitrogen doped titanium dioxide (TiO2) thin films were deposited by RF magnetron sputtering onto various substrates. The films were prepared in plasma of argon, oxygen, and nitrogen, with varying the nitrogen content, from 0% up to 70%. The resulting TiOx–Ny films were found to consist of cubic TiN osbornite and tetragonal TiO2 rutile phases. Using optical spectroscopy with large spectral range from 350 to 1000 nm, the band gap width was determined and a narrowing of the optical gap from 2.76 to 2.32 eV was observed as a function of the N-content. It was found that the optical properties of the TiOx–Ny layers are influenced by the surface morphology, roughness, surface energy and phase content. The chemical composition, the crystalline structure, the surface morphology and the surface energy were thoroughly studied by the Rutherford backscattering spectrometry (RBS), grazing-angle XRD, atomic force microscopy (AFM) and contact angle measurements (wettability), respectively.  相似文献   

12.
In2S3 thin films were deposited onto indium tin oxide-coated glass substrates by chemical spray pyrolysis while keeping the substrates at different temperatures. The structures of the sprayed In2S3 thin films were characterized by X-ray diffraction (XFD). The quality of the thin films was determined by Raman spectroscopy. Scanning electron microscopy (SEM) and atomic force microscopy were used to explore the surface morphology and topography of the thin films, respectively. The optical band gap was determined based on optical transmission measurements. The indium sulfide phase exhibited a preferential orientation in the (0, 0, 12) crystallographic direction according to the XRD analysis. The phonon vibration modes determined by Raman spectroscopy also confirmed the presence of the In2S3 phase in our samples. According to SEM, the surface morphologies of the films were free of defects. The optical band gap energy varied from 2.82 eV to 2.95 eV.  相似文献   

13.
We investigated structural and optical properties of ZnO thin films grown on (112?0) a-plane sapphire substrates using plasma-assisted molecular beam epitaxy. Negligible biaxial stress in ZnO thin films is due to the use of (112?0) a-plane sapphire substrates and slow substrate cooling. The 14 K photoluminescence spectrum shows a blueshift of energy positions compared with ZnO single crystal. A donor with binding energy of 43 meV and an acceptor with binding energy of ~170 meV are identified by well-resolved photoluminescence spectra. A characteristic emission band at 3.320 eV (so-called A-line) is studied. Based on analysis from photoluminescence spectra, the origin of the A-line, it seems, is more likely an (e, A°) transition, in which defect behaves as an acceptor. The room-temperature photoluminescence is dominated by the FX at 3.307 eV, which is an indication of strongly reduced defect density in ZnO thin films.  相似文献   

14.
Tin oxide thin films were deposited by a novel technique called as modified-SILAR. The preparative parameters were optimized to obtain good quality thin films. As-deposited films were annealed in O2 atmosphere for 1 h at 500 °C. The annealed films were irradiated using Au8+ ions with energy of 100 MeV at different fluencies of 1 × 1011, 1 × 1012, 5 × 1012 and 1 × 1013 ions/cm2 using tandem pelletron accelerator. The irradiation-induced modifications in tin oxide thin films were studied using XRD, AFM, optical band gap, photoluminescence and IV measurements. XRD studies showed formation of tin oxide with tetragonal structure. AFM revealed uniform deposition of the material with increase in grain size after irradiation. Decrease in band gap from 3.51 eV to 2.82 eV was seen with increases in fluency. A decrease in PL intensity, and an additional peak was observed after irradiation. IV measurements showed a decrease in resistance with fluency.  相似文献   

15.
The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV‐Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.  相似文献   

16.
《Current Applied Physics》2010,10(3):724-728
Fe3+ doped δ-Bi2O3 thin films were prepared by sol–gel method on quartz glass substrate at room temperature and annealed at 800 °C. The thin films were then characterized for structural, surface morphological, optical and electrical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), optical absorption measurements and d.c. two-probe, respectively. The XRD analyses revealed the formation δ-Bi2O3 followed by a mixture of Bi25FeO40 and Bi2Fe4O9. SEM images showed reduction in grain sizes after doping and the optical studies showed a direct band gap which reduced from 2.39 eV for pure δ-Bi2O3 to 1.9 eV for 10% Fe3+ doped δ-Bi2O3 thin film. The electrical conductivity measurement showed the films are semiconductors.  相似文献   

17.
Highly transparent N-doped ZnO thin films were deposited on ITO coated corning glass substrate by sol–gel method. Ammonium nitrate was used as a dopant source of N with varying the doping concentration 0, 0.5, 1.0, 2.0 and 3.0 at%. The DSC analysis of prepared NZO sols is observed a phase transition at 150 °C. X-ray diffraction pattern showed the preferred (002) peak of ZnO, which was deteriorated with increased N concentrations. The transmittance of NZO thin films was observed to be ~88%. The bandgap of NZO thin films increased from 3.28 to 3.70 eV with increased N concentration from 0 to 3 at%. The maximum carrier concentration 8.36×1017 cm−3 and minimum resistivity 1.64 Ω cm was observed for 3 at% N doped ZnO thin films deposited on glass substrate. These highly transparent ZnO thin films can be used as a window layer in solar cells and optoelectronic devices.  相似文献   

18.
This work describes the physical properties of lead iodide (PbI2) thin films with different thicknesses that were deposited on ultrasonically cleaned glass substrates using a thermal evaporation technique at 5×10-6 torr. The initial material was purified by the zone refining technique under an atmosphere of argon gas. XRD analysis of the material demonstrates that the thin films were preferably oriented along the (001) direction. The size of the crystallites was calculated from the Scherer relation and found to be in the range of ~5–10 nm, with higher values being observed for increasing film thicknesses. The optical energy band gaps were evaluated and determined to belong to direct transitions. Because the band gap increased with decreasing film thickness, a systematic blue shift was observed. The surface morphologies of PbI2 films exhibited a clear increase in grain size with increasing film thickness. The photoluminescence and dc conductivity of the thin films are also discussed.  相似文献   

19.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

20.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号