共查询到20条相似文献,搜索用时 15 毫秒
1.
Christopher A. Walton M.F. HorstemeyerHolly J. Martin D.K. Francis 《International Journal of Solids and Structures》2014
A new consistent formulation coupling kinematics, thermodynamics, and kinetics with damage using an extended multiplicative decomposition of the deformation gradient that accounts for corrosion effects is proposed. The corrosion model, based upon internal state variable (ISV) theory, captures the effects of general corrosion, pit nucleation, pit growth, pit coalescence, and intergranular corrosion. The different geometrically-affected rate equations are given for each mechanism after the ISV formalism and have a thermodynamic force pair that acts as an internal stress. Pit nucleation is defined as the number density that changes as a function of time driven by the local galvanic electrochemical potential between base matrix material and second phase material. Pit growth is defined as pit surface area growth. Pit coalescence is the interaction of the pits as they grow together and is often characterized by transgranular corrosion and is mathematically constructed from Coulomb’s Law and the Maxwell stress. General corrosion is signified by thickness loss of the material and is characterized by a modified Faraday’s Law. The intergranular corrosion rate is related to the grain boundary effects so that it is characterized by the misorientation between grains. The total damage (void volume or area fraction) is the addition of the general, pitting, and intergranular corrosion. The ability of the model to predict aspects of the corrosion mechanisms and aging history effects of an engineering material are then illustrated by comparison with experimental data of an extruded AZ31 magnesium alloy. 相似文献
2.
A review of the development and the usages of internal state variable (ISV) theory are presented in this paper. The history of different developments leading up the formulation of the watershed paper by Coleman and Gurtin is discussed. Following the Coleman and Gurtin thermodynamics, different researchers have employed the ISV theory for dislocations, creep, continuum damage mechanics (CDM), unified-creep-plasticity (UCP), polymers, composites, biomaterials, particulate materials, multiphase and multiphysics materials, materials processing, multiscale modeling, integrating materials science (structure–property relations) into applied mechanics formulations, and design optimization under uncertainty for use in practical engineering applications. 相似文献
3.
F. Zaïri M. Naït-Abdelaziz J.M. Gloaguen J.M. Lefebvre 《International Journal of Plasticity》2011,27(1):25-51
The present work focuses on the development of a physically-based model for large deformation stress-strain response and anisotropic damage in rubber-toughened glassy polymers. The main features leading to a microstructural evolution (regarding cavitation, void aspect ratio, matrix plastic anisotropy and rubbery phase deformation) in rubber-toughened glassy polymers are introduced in the proposed constitutive model. The constitutive response of the glassy polymer matrix is modelled using the hyperelastic-viscoplastic model of
[Boyce et al., 1988] and [Boyce et al., 2000]. The deformation mechanisms of the matrix material are accounted for by two resistances: an elastic-viscoplastic isotropic intermolecular resistance acting in parallel with a visco-hyperelastic anisotropic network resistance, each resistance being modified to account for damage effects by void growth with a variation of the void aspect ratio. The effective contribution of the hyperelastic particles to the overall composite behaviour is taken into account by treating the overall system in a composite scheme framework. The capabilities of the proposed constitutive model are checked by comparing experimental data with numerical simulations. The deformation behaviour of rubber-toughened poly(methyl methacrylate) was investigated experimentally in tension at a temperature of 80 °C and for different constant true strain rates monitored by a video-controlled technique. The reinforcing phase is of the soft core-hard shell type and its diameter is of the order of one hundred nanometers. The particle volume fraction was adjusted from 15% to 45% by increments of 5%. The stress-strain response and the inelastic volumetric strain are found to depend markedly on particle volume fraction. For a wide range of rubber volume fractions, the model simulations are in good agreement with the experimental results. Finally, a parametric analysis demonstrates the importance of accounting for void shape, matrix plastic anisotropy and rubber content. 相似文献
4.
A. D. Drozdov 《Archive of Applied Mechanics (Ingenieur Archiv)》2001,71(1):23-42
Summary Constitutive equations are derived for the viscoelastic and viscoplastic behavior of amorphous glassy polymers at isothermal
loading with small strains. The model is based on the trapping concept: a disordered medium is treated as an ensemble of plastic
flow units (with the characteristic size of micrometers), which, in turn, consist of a number of cooperative rearranging regions
(with the characteristic length of nanometers). The viscoelastic response is described by rearrangement of relaxing regions,
whereas the viscoplastic behavior is modeled as irreversible deformation of plastic units. Adjustable parameters are found
by fitting observations for aromatic polyesters, nylon-66, polycarbonate block copolymers and an epoxy glass. Fair agreement
is demonstrated between experimental data and results of numerical simulation.
Received 17 November 1999; accepted for publication 23 March 2000 相似文献
5.
Estefanía Peña 《Journal of the mechanics and physics of solids》2011,59(9):1808-1822
Deformation induced softening is an inelastic phenomenon frequently accompanying mechanical response of soft biological tissues. Inelastic phenomena which occur in mechanical testing of biological tissues are very likely to be associated with alterations in the internal structure of these materials.In this study, a novel structural constitutive model is formulated to describe the inelastic effects in soft biological tissues such as Mullins type behavior, damage and permanent set as a result of residual strains after unloading. Anisotropic softening is considered by evolution of internal variables governing the anisotropic properties of the material. We consider two weight factors wi (softening) and sk (discontinuous damage) as internal variables characterizing the structural state of the material. Numerical simulations of several soft tissues are used to demonstrate the performance of the model in reproducing the inelastic behavior of soft biological tissues. 相似文献
6.
An elastoplastic damage model considering progressive imperfect interface is proposed to predict the effective elastoplastic behavior and multi-level damage progression in fiber-reinforced metal matrix composites (FRMMCs) under transverse loading. The modified Eshelby’s tensor for a cylindrical inclusion with slightly weakened interface is adopted to model fibers having mild or severe imperfect interfaces [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. J. Eng. Mech. ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000039]. An elastoplastic model is derived micromechanically on the basis of the ensemble-volume averaging procedure and the first-order effects of eigenstrains. A multi-level damage model [Lee, H.K., Pyo, S.H., 2008a. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Compos. Sci. Technol. 68, 387–397] in accordance with the Weibull’s probabilistic function is then incorporated into the elastoplastic multi-level damage model to describe the sequential, progressive imperfect interface in the composites. Numerical examples corresponding to uniaxial and biaxial transverse tensile loadings are solved to illustrate the potential of the proposed micromechanical framework. A series of parametric analysis are carried out to investigate the influence of model parameters on the progression of imperfect interface in the composites. Furthermore, a comparison between the present prediction and experimental data in the literature is made to assess the capability of the proposed micromechanical framework. 相似文献
7.
Mats Danielsson David M. Parks Mary C. Boyce 《Journal of the mechanics and physics of solids》2007,55(3):533-561
Under certain conditions, such as sufficiently low temperatures, high loading rates and/or highly triaxial stress states, glassy polymers display an unfavorable characteristic—brittleness. A technique used for reducing the brittleness (increasing the fracture toughness) of these materials is rubber toughening. While there is significant qualitative understanding of the mechanical behavior of rubber-toughened polymers, quantitative modeling tools for the large-strain deformation of rubber-toughened glassy polymers are largely lacking.In this paper, we develop a suite of numerical tools to investigate the mechanical behavior of rubber-toughened glassy polymers, with emphasis on rubber-toughened polycarbonate. The rubber particles are modeled as voids in view of their deformation-induced cavitation early during deformation. A three-dimensional micromechanical model of the heterogeneous microstructure is developed to study the effects of initial rubber particle (void) volume fraction on the underlying elasto-viscoplastic deformation mechanisms in the material, and how these mechanisms influence the macroscopic response of the material. A continuum-level constitutive model is developed for the large-strain elasto-viscoplastic deformation of porous glassy polymers, and it is calibrated against micromechanical modeling results for porous polycarbonate. The constitutive model can be used to study various boundary value problems involving rubber-toughened (porous) glassy polymers. As an example, the case of an axisymmetric notched bar is simulated for the case of polycarbonate with varying levels of initial porosity. The quality of the constitutive model calibration is assessed using a multi-scale modeling approach. 相似文献
8.
H. Radhakrishnan S.Dj. Mesarovic A. Qiu D.F. Bahr 《International Journal of Solids and Structures》2013,50(14-15):2224-2230
Carbon nanotubes (CNT), grown on a substrate, form a turf – a complex structure of intertwined, mostly nominally vertical tubes, cross-linked by adhesive contact and few bracing tubes. The turfs are compliant and good thermal and electrical conductors. In this paper, we consider the micromechanical analysis of the turf deformation reported earlier, and develop a phenomenological constitutive model of the turf. We benchmark the developed model using a finite element implementation and compare the model predictions to the results two different nanoindentation tests.The model includes: nonlinear elastic deformation, small Kelvin–Voigt type relaxation, caused by the thermally activated sliding of contacts, and adhesive contact between the turf and the indenter. The pre-existing (locked-in) strain energy of bent nanotubes produces a high initial tangent modulus, followed by an order of magnitude decrease in the tangent modulus with increasing deformation. The strong adhesion between the turf and indenter tip is due to the van der Waals interactions.The finite element simulations capture the results from the nanoindentation experiments, including the loading, unloading, viscoelastic relaxation during hold, and adhesive pull-off. 相似文献
9.
H. Jerry Qi Thao D. Nguyen Christopher M. Yakacki 《Journal of the mechanics and physics of solids》2008,56(5):1730-1751
Shape memory polymers (SMPs) are polymers that can demonstrate programmable shape memory effects. Typically, an SMP is pre-deformed from an initial shape to a deformed shape by applying a mechanical load at the temperature TH>Tg. It will maintain this deformed shape after subsequently lowering the temperature to TL<Tg and removing the externally mechanical load. The shape memory effect is activated by increasing the temperature to TD>Tg, where the initial shape is recovered. In this paper, the finite deformation thermo-mechanical behaviors of amorphous SMPs are experimentally investigated. Based on the experimental observations and an understanding of the underlying physical mechanism of the shape memory behavior, a three-dimensional (3D) constitutive model is developed to describe the finite deformation thermo-mechanical response of SMPs. The model in this paper has been implemented into an ABAQUS user material subroutine (UMAT) for finite element analysis, and numerical simulations of the thermo-mechanical experiments verify the efficiency of the model. This model will serve as a modeling tool for the design of more complicated SMP-based structures and devices. 相似文献
10.
11.
12.
We formulate a simple one-parameter macroscopic model of distributed damage and fracture of polymers that is amenable to a straightforward and efficient numerical implementation. We show that the macroscopic model can be rigorously derived, in the sense of optimal scaling, from a micromechanical model of chain elasticity and failure regularized by means of fractional strain-gradient elasticity. In particular, we derive optimal scaling laws that supply a link between the single parameter of the macroscopic model, namely, the critical energy-release rate of the material, and micromechanical parameters pertaining to the elasticity and strength of the polymer chains and to the strain-gradient elasticity regularization. We show how the critical energy-release rate of specific materials can be determined from test data. Finally, we demonstrate the scope and fidelity of the model by means of an example of application, namely, Taylor-impact experiments of polyurea 1000 rods. 相似文献
13.
In this paper, a constitutive model is proposed for piezoelectric material solids containing distributed cracks. The model is formulated in a framework of continuum damage mechanics using second rank tensors as internal variables. The Helrnhotlz free energy of piezoelectric mate- rials with damage is then expressed as a polynomial including the transformed strains, the electric field vector and the tensorial damage variables by using the integrity bases restricted by the initial orthotropic symmetry of the material. By using the Talreja's tensor valued internal state damage variables as well as the Helrnhotlz free energy of the piezoelectric material, the constitutive relations of piezoelectric materials with damage are derived. The model is applied to a special case of piezoelectric plate with transverse matrix cracks. With the Kirchhoff hypothesis of plate, the free vibration equations of the piezoelectric rectangular plate considering damage is established. By using Galerkin method, the equations are solved. Numerical results show the effect of the damage on the free vibration of the piezoelectric plate under the close-circuit condition, and the present results are compared with those of the three-dimensional theory. 相似文献
14.
Christelle Combescure Hélène Dumontet François Voldoire 《International Journal of Solids and Structures》2013
A new stress resultant constitutive model for reinforced concrete plates under cyclic solicitations is presented. This model is built by the periodic homogenisation approach using the averaging method and couples damage of concrete and periodic debonding between concrete and steel rebar. In one-dimensional situations, we derive a closed-form solution of the local problem useful to verify and set up the plate problem. The one dimensional macroscopic constitutive model involves a limited number of parameters, the sensibility of which is studied. Comparison to experimental results underlines the pertinence of the model by considering internal debonding in order to properly represent the mechanical dissipation occurring during cyclic loadings on reinforced concrete panels. 相似文献
15.
K.N. Solanki M.F. Horstemeyer W.G. Steele Y. Hammi J.B. Jordon 《International Journal of Solids and Structures》2010,47(2):186-203
In this paper, we illustrate a formal calibration, validation, and verification process that includes uncertainty in an internal state variable plasticity-damage model that is implemented in a finite element code. The physically motivated continuum model characterizes damage evolution by incorporating material uncertainty due to microstructural spatial clustering. The uncertainty analysis is performed by introducing material variation through model validation and verification. The effect of variability in microstructural clustering and boundary conditions on the sensitivities and uncertainty of the plasticity-damage evolution for the 7075 aluminum alloy is characterized. The results show the potential of this methodology in the evaluation of material response uncertainty due to microstructure spatial clustering and its effect on damage evolution. For damage evolution, we have shown that the initial isotropic damage evolved into an anisotropic form as the deformation increased which is consistent with experimentally observed behavior for 7075 aluminum alloy in literature. Also, the sensitivities were found to be consistent with the physics of damage progression for this particular type of material. Through the sensitivity analysis, the initial defect size and number density of cracked particles are important at the beginning of deformation. As damage evolves, more voids are nucleated and grow and the sensitivity analysis illustrates this as well. Then, voids combine with each other and coalescence becomes the main driver, which is also confirmed by the sensitivity analysis. This work also shows that the microstructurally based damage evolution equations provide an accurate representation of the damage progression due to large intermetallic particles. Finally, we illustrate that the initial variation in the microstructure clustering can lead to about ±7.0%, ±8.1%, and ±9.75% variation in the elongation to failure strain for torsion, tensile, and compressive loading, respectively. 相似文献
16.
The relationship between critical state and particle shape corresponds to the most fundamental aspect of the mechanics of granular materials. This paper presents an investigation into this relationship through macro-scale and micro-scale laboratory experiments in conjunction with interpretation and analysis in the framework of critical state soil mechanics. Spherical glass beads and crushed angular glass beads of different percentages were mixed with a uniform quartz sand (Fujian sand) to create a sequence of mixtures with varying particle shape. On the micro-scale, particle shape was accurately measured using a laser scanning technique, and was characterized by aspect ratio, sphericity and convexity; a new shape index, taken as the average of the three shape measures and referred to as overall regularity, was proposed to provide a collective characterization of particle shape. On the macro-scale, both undrained and drained triaxial tests were carried out to provide evidence that varying particle shape can alter the overall response as well as the critical states in both stress space and volumetric compression space. The mixtures of Fujian sand and spherical glass beads were found to be markedly more susceptible to liquefaction than the mixtures of Fujian sand and crushed angular glass beads. The change in liquefaction susceptibility was shown to be consistent with the change in the position of the critical state locus (CSL) in the compression space, manifested by a decrease in the intercept and gradient of the CSL due to the presence of spherical glass beads. Quantitative relationships have been established between each of the critical state parameters and each of the shape parameters, thereby providing a way to construct macro-scale constitutive models with intrinsic micro-scale properties built in. 相似文献
17.
IntroductionWhenthestructuresaresubjectedtotransientloadssuchasbomb_load,earthquakeandsoon,engineerspayspecialattentiontothesafetybehaviorofstructures.Thereislotsofresearchworkontheconventionalmethodofdynamicresponseanalysisforstructuralengineeringbot… 相似文献
18.
This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called ‘implicit’ gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes. 相似文献
19.
Thomas Gernay Alain Millard Jean-Marc Franssen 《International Journal of Solids and Structures》2013,50(22-23):3659-3673
This paper aims to develop a multiaxial concrete model for implementation in finite element software dedicated to the analysis of structures in fire. The need for proper concrete model remains a challenging task in structural fire engineering because of the complexity of the concrete mechanical behavior characterization and the severe requirements for the material models raised by the development of performance-based design. A fully three-dimensional model is developed based on the combination of elastoplasticity and damage theories. The state of damage in concrete, assumed isotropic, is modeled by means of a fourth order damage tensor to capture the unilateral effect. The concrete model comprises a limited number of parameters that can be identified by three simple tests at ambient temperature. At high temperatures, a generic transient creep model is included to take into account explicitly the effect of transient creep strain. The numerical implementation of the concrete model in a finite element software is presented and a series of numerical simulations are conducted for validation. The concrete behavior is accurately captured in a large range of temperature and stress states. A limitation appears when modeling the concrete post-peak behavior in highly confined stress states, due to the coupling assumption between damage and plasticity, but the considered levels of triaxial confinement are unusual stress states in structural concrete. 相似文献
20.
We aim to derive a damage model for materials damaged by microcracks. The evolution of the cracks shall be governed by the maximum energy release rate, which was recently shown to be a direct consequence of the variational principle of a body with a crack (Arch. Appl. Mech. 69 (5) (1999) 337). From this, we get the path of the growing crack by introducing a series of thermodynamically equivalent straight cracks. The equivalence of the energy dissipated by microcrack growth and the damage dissipation leads to our damage evolution law. This evolution law will be embedded in a finite deformation framework based on a multiplicative decomposition into elastic and damage parts. As a consequence of this, we can present the anisotropic damaged elasticity tensor with the help of push and pull operations. The connection of this approach to other well known damage theories will be shown and the advantages of a finite element framework will be worked out. Numerical examples show the possibilities of the proposed model. 相似文献