首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti–6Al–4V is a dual phase material with range of possible complex microstructures. It is well known that mechanical behavior of Ti–6Al–4V is significantly affected by its texture and microstructure morphology. A three-dimensional microstructure-based constitutive model for monotonic and cyclic deformation of duplex Ti–6Al–4V is developed and implemented. The model includes length scale effects associated with dislocation interactions with different microstructure features, and is calibrated using polycrystalline finite element simulations to fit the measured macroscopic responses (overall stress–strain behavior) of a duplex heat treated Ti–6Al–4V alloy subjected to a complex cyclic loading history. Representative microstructures are simulated using a three-dimensional finite element mesh with periodic boundary conditions imposed in all directions. The measured orientation and misorientation distributions of grains of this duplex Ti–6Al–4V are considered, and similar probability density distributions of the crystallographic orientations are assigned to the finite element mesh. The misorientation distributions are then fit using the simulated annealing method. Effects of microstructural features are examined and compared with the experimental data in terms of their influence on the material yield strength. The results are shown to be in good agreement with the experimental observations.  相似文献   

2.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

3.
A stochastic crystal plasticity model is proposed and applied within the rate-independent regime. As opposed to conventional deterministic algorithms wherein multiple slip systems are activated and redundant constraints may exist, the new Monte Carlo plasticity (MCP) paradigm is based on a stochastic chain of singly activated slip systems and thus avoids the possible ill-condition associated with multi-slip algorithms. The choice of the activated slip system is made at each Monte Carlo (MC) step based on the Metropolis algorithm. The MCP model is implemented within a Material Point Method (MPM) as a constitutive model to capture the elasto-plastic behavior of polycrystalline materials. A comparison with a commonly used singular value decomposition (SVD) algorithm indicates that MCP offers superior computational efficiency while maintaining comparable accuracy.  相似文献   

4.
In this study, a homogenization theory based on the Gurtin strain gradient formulation and its finite element discretization are developed for investigating the size effects on macroscopic responses of periodic materials. To derive the homogenization equations consisting of the relation of macroscopic stress, the weak form of stress balance, and the weak form of microforce balance, the Y-periodicity is used as additional, as well as standard, boundary conditions at the boundary of a unit cell. Then, by applying a tangent modulus method, a set of finite element equations is obtained from the homogenization equations. The computational stability and efficiency of this finite element discretization are verified by analyzing a model composite. Furthermore, a model polycrystal is analyzed for investigating the grain size dependence of polycrystal plasticity. In this analysis, the micro-clamped, micro-free, and defect-free conditions are considered as the additional boundary conditions at grain boundaries, and their effects are discussed.  相似文献   

5.
For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation (GND) densities supplement the conventional theory within a non-work-conjugate framework in which there is no need to introduce higher-order microscopic stresses that would be work-conjugate to slip rate gradients. We discuss its connection to a work-conjugate type of finite deformation gradient crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution for the small deformation theory. As in a previous formulation for small deformation, the present formulation applies to the context of multiple and three-dimensional slip deformations.  相似文献   

6.
We develop a model framework for anisotropic damage coupled to crystal (visco)plasticity, which is based on the concept of a fictitious (undamaged) configuration. The theoretical setting is that of finite strains, which is natural when studying crystal inelasticity even in the case of actual small strains. It turns out that the evolution law for damage, which reflects degradation in the slip planes and which is the key new relation, bears strong resemblance with the inelastic flow rule. Some numerical results showing qualitatively the anisotropic development of damage concludes the paper.  相似文献   

7.
The dislocation density tensor computed as the cud of plastic distortion is regarded as a new constitutive variable in crystal plasticity. The dependence of the free energy function on the dislocation density tensor is explored starting from a quadratic ansatz. Rank one and logarithmic dependencies are then envisaged based on considerations from the statistical theory of dislocations. The rele- vance of the presented free energy potentials is evaluated from the corresponding analytical solutions of the periodic two-phase laminate problem under shear where one layer is a single crystal material undergoing single slip and the second one remains purely elastic.  相似文献   

8.
We present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influence of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.  相似文献   

9.
We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the “higher-order” boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.  相似文献   

10.
A hierarchical multi-scale model that couples a region of material described by discrete dislocation plasticity to a surrounding region described by conventional crystal plasticity is presented. The coupled model is aimed at capturing non-classical plasticity effects such as the long-range stresses associated with a density of geometrically necessary dislocations and source limited plasticity, while also accounting for plastic flow and the associated energy dissipation at much larger scales where such non-classical effects are absent. The key to the model is the treatment of the interface between the discrete and continuum regions, where continuity of tractions and displacements is maintained in an average sense and the flow of net Burgers vector is managed via “passing” of discrete dislocations. The formulation is used to analyze two plane strain problems: (i) tension of a block and (ii) crack growth under mode I loading with various sizes of the discrete dislocation plasticity region surrounding the crack tip. The computed crack growth resistance curves are nearly independent of the size of the discrete dislocation plasticity region for region sizes ranging from to . The multi-scale model can reduce the computational time for the mode I crack analysis by a factor of 14 with little or no loss of fidelity in the crack growth predictions.  相似文献   

11.
12.
Plastic flow in crystal at submicron-to-nanometer scales involves many new interesting problems. In this paper, a unified computational model which directly combines 3D discrete dislocation dynamics (DDD) and continuum mechanics is developed to investigate the plastic behaviors at these scales. In this model, the discrete dislocation plasticity in a finite crystal is solved under a completed continuum mechanics framework: (1) an initial internal stress field is introduced to represent the preexisting stationary dislocations in the crystal; (2) the external boundary condition is handled by finite element method spontaneously; and (3) the constitutive relationship is based on the finite deformation theory of crystal plasticity, but the discrete plastic strains induced by the slip of the newly nucleated or propagating dislocations are calculated by dislocation dynamics methodology instead of phenomenological evolution equations used in conventional crystal plasticity. These discrete plastic strains are then localized to the continuum material points by a Burgers vector density function proposed by us. Various processes, such as loop dislocation evolution, dislocation junction formation etc., are simulated to verify the reliability of this computational model. Specifically, a uniaxial compression test for micro-pillars of Cu is simulated by this model to investigate the ‘dislocation starvation hardening’ observed in the recent experiment.  相似文献   

13.
This work is concerned with incorporating the kinematic and stress effects of excess dislocations in a constitutive model for the elastoplastic behavior of crystalline materials. The foundation of the model is a three term multiplicative decomposition of the deformation gradient in which the two classical terms of plastic and elastic deformation are included along with an additional term for long range strain due to the collective effects of excess dislocations. The long range strain is obtained from an assumed density of Volterra edge dislocations and is directly related to gradients in slip. A new material parameter emerges which is the size the region about a continuum point that contributes to long range strains.Using Hookean elasticity, the stress at a point is linearly related to the sum of the elastic plus the long range strain fields. However, the driving force for slip is postulated to be due only to the elastic stress so that the long range stress is a back stress in the constitutive relationship for plastic deformation. A consistent balance of the total deformation rate with the three proposed mechanisms of deformation leads to a set of differential equations that can be solved for the elastic stress, rotation and pressure which then implicitly defines the material state and equilibrium stress. Results from the simulation of a tapered tensile specimen demonstrate that the constitutive model exhibits isotropic and kinematic type hardening effects as well as changes in the pattern of plastic deformation and necking when compared to a material without slip gradient effects.  相似文献   

14.
A FE modelling of the elastoplastic interactions occurring within a 3D polycrystal subjected to diffusive phase transformation is proposed. The parent polycrystal is represented by a Voronoi tessellation, where grains differ in shape, size and crystallographic orientation. Grains of the new phase nucleate at favourable sites of the parent polycrystal then grow isotropically, following specific kinetics. This process can result in various product polycrystal morphologies where grains are distinguished by their morphologies and their crystallographic orientations, and have crystalline properties different from those of the parent grains. Application is performed on the austenite-to-ferrite transformation of a low carbon steel, by analysing different basic cases of transformation history with different constitutive modellings. Microplasticity and its related internal stresses are shown to develop during the phase transformations and to affect significantly the elastoplasticity of the product medium.  相似文献   

15.
The peridynamic model is a framework for continuum mechanics based on the idea that pairs of particles exert forces on each other across a finite distance. The equation of motion in the peridynamic model is an integro-differential equation. In this paper, a notion of a peridynamic stress tensor derived from nonlocal interactions is defined. At any point in the body, this stress tensor is obtained from the forces within peridynamic bonds that geometrically go through the point. The peridynamic equation of motion can be expressed in terms of this stress tensor, and the result is formally identical to the Cauchy equation of motion in the classical model, even though the classical model is a local theory. We also establish that this stress tensor field is unique in a certain function space compatible with finite element approximations.  相似文献   

16.
Structural stability and failure analysis using peridynamic theory   总被引:2,自引:0,他引:2  
The peridynamic theory has been successfully utilized for damage prediction in many problems. However, the elastic stability of structures has not been studied using the peridynamic theory. Therefore, this paper investigates the elastic stability of simple structures to determine buckling characteristics of the peridynamic theory by considering two sets of problems. The first set of problems involves rectangular columns under compression to find the effects of the cross-sectional area and boundary conditions on buckling load. The second set involves rectangular plates under a uniform temperature load to establish the effects of plate dimensions and material properties on the critical buckling temperature. The predictions of the peridynamic theory agree with those published in the literature. The solution method is based on reducing the peridynamic equations of motion to discrete forms by using collocation points. These discrete equations are then solved using adaptive dynamic relaxation. Furthermore, perturbation method using geometrical imperfections is utilized to trigger lateral displacements in the numerical solutions.  相似文献   

17.
We derive a three-dimensional constitutive theory accounting for length-scale dependent internal residual stresses in crystalline materials that develop due to a non-homogeneous spatial distribution of the excess dislocation (edge and screw) density. The second-order internal stress tensor is derived using the Beltrami stress function tensor φ that is related to the Nye dislocation density tensor. The formulation is derived explicitly in a three-dimensional continuum setting for elastically isotropic materials. The internal stresses appear as additional resolved shear stresses in the crystallographic visco-plastic constitutive law for individual slip systems. Using this formulation, we investigate two boundary value problems involving single crystals under symmetric double slip. In the first problem, the response of a geometrically imperfect specimen subjected to monotonic and cyclic loading is investigated. The internal stresses affect the overall strengthening and hardening under monotonic loading, which is mediated by the severity of initial imperfections. Such imperfections are common in miniaturized specimens in the form of tapered surfaces, fillets, fabrication induced damage, etc., which may produce strong gradients in an otherwise nominally homogeneous loading condition. Under cyclic loading the asymmetry in the tensile and compressive strengths due to this internal stress is also strongly influenced by the degree of imperfection. In the second example, we consider simple shear of a single crystalline lamella from a layered specimen. The lamella exhibits strengthening with decreasing thickness and increasing lattice incompatibility with shearing direction. However, as the thickness to internal length-scale ratio becomes small the strengthening saturates due to the saturation of the internal stress.Finally, we present the extension of this approach for crystalline materials exhibiting elastic anisotropy, which essentially depends on the appropriate Green function within φ.  相似文献   

18.
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and micro-devices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either ‘microhard’ (impenetrable to dislocations) or ‘microfree’ (an infinite dislocation sink).  相似文献   

19.
The solutions of a boundary value problem are explored for various classes of generalised crystal plasticity models including Cosserat, strain gradient and micromorphic crystal plasticity. The considered microstructure consists of a two-phase laminate containing a purely elastic and an elasto-plastic phase undergoing single or double slip. The local distributions of plastic slip, lattice rotation and stresses are derived when the microstructure is subjected to simple shear. The arising size effects are characterised by the overall extra back stress component resulting from the action of higher order stresses, a characteristic length lc describing the size-dependent domain of material response, and by the corresponding scaling law ln as a function of microstructural length scale, l. Explicit relations for these quantities are derived and compared for the different models. The conditions at the interface between the elastic and elasto-plastic phases are shown to play a major role in the solution. A range of material parameters is shown to exist for which the Cosserat and micromorphic approaches exhibit the same behaviour. The models display in general significantly different asymptotic regimes for small microstructural length scales. Scaling power laws with the exponent continuously ranging from 0 to −2 are obtained depending on the values of the material parameters. The unusual exponent value −2 is obtained for the strain gradient plasticity model, denoted “curl Hp” in this work. These results provide guidelines for the identification of higher order material parameters of crystal plasticity models from experimental data, such as precipitate size effects in precipitate strengthened alloys.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号