首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A unified approach, originating from Cauchy integral theorem, is presented to derive boundary integral equations for two dimensional elasticity problems. Several sets of boundary integral equations are derived and their relations are revealed. Explicit expressions for materials with different symmetry planes are listed. Special attention is given to the formulation that is based on the tractions and the tangential derivatives of displacements along solid boundary, since its integral kernels have the weakest singularities. The formulation is further extended to include singular points, such as dislocations and line forces, in a finite body, so that the singular stress field can be directly obtained from solving the integral equations on the external boundary, without involving the linear superposition technique that was often used in the literature. Its application in simulating discrete dislocation motion in a finite solid body is discussed.  相似文献   

2.
It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.  相似文献   

3.
Superimposed dynamic, time-harmonic incremental deformations are considered in an elastic, orthotropic and incompressible, infinite body, subject to plane, homogeneous—but otherwise arbitrary—deformation. The dynamic, infinite body Green's function is found and, in addition, new boundary integral equations are obtained for incremental in-plane hydrostatic stress and displacements. These findings open the way to integral methods in incremental, dynamic elasticity. Moreover, the Green's function is employed as a dynamic perturbation to analyze interaction between wave propagation and shear band formation. Depending on anisotropy and pre-stress level, peculiar wave patterns emerge with focussing and shadowing effects of signals, which may remain undetected by the usual criteria based on analysis of weak discontinuity surfaces.  相似文献   

4.
Closed form solution of quadruple integral equations involving inverse Mellin transforms has been obtained. The solution of quadruple integral equations is used in solving a two dimensional four-part mixed boundary value contact problem for an elastic wedge-shaped region as an application. Closed form expression for shear stress has been obtained. Finally, numerical results for shear stress are obtained and shown graphically.  相似文献   

5.
In this paper a memory integral viscoelastic equation is considered for simulating complex flows of non-Newtonian fluids by stream tube analysis. A formalism is developed to take into account co-deformational memory equations in a mapped computational domain where the transformed streamlines are parallel and straight. The particle-tracking problem is avoided. Evolution in time and related kinematic quantities involved with a K-BKZ integral constitutive model are easily taken into account in evaluating the stresses. Successive subdomains, the stream tubes, may be considered for computing the main flow in abrupt axisymmetric contractions from the wall to the central flow region. The ‘peripheral stream tube’ close to the duct wall is determined by developing a non-conventional modified Hermite element. A mixed formulation is adopted and the relevant non-linear equations are solved numerically by the Levenberg-Marquardt algorithm. Although the singularity at the section of contraction is not involved explicitly, the results obtained for the peripheral stream tube clearly show the singularity effects and the extent of the recirculating zone near the salient corner. The algorithm is stable even at high flow rates and provides satisfactory solutions when compared with similar calculations in the literature.  相似文献   

6.
Summary A variant of the boundary element method, called the boundary contour method, offers a further reduction in dimensionality. Consequently, boundary contour analysis of 2-D problems does not require any numerical integration at all. In a boundary contour analysis, boundary stresses can be accurately computed using the approach proposed in Ref. [1]. However, due to singularity, this approach can be used only to calculate boundary stresses at points that do not lie at an end of a boundary element. Herein, it is shown that a technique based on the displacement/velocity shape functions can overcome this drawback. Further, the approach is much simpler to apply, requires less computational effort, and provides competitive accuracy. Numerical solutions and convergence study for some well-known problems in linear elasticity and Stokes flow are presented to show the effectiveness of the proposed approach. This research was supported in part by the 2004 Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge Associated Universities and by the University of South Alabama Research Council.  相似文献   

7.
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.  相似文献   

8.
In this paper planar viscous flows with a free boundary are further studied using the quasisteady approximation [1]. The introduction of the bianalytical stress-stream function provides an opportunity to adopt the theory of analytical functions. The mode of construction of the Fredholm boundary integral equations is here proposed through the explicit solutions of two Hilbert problems for holomorphic functions with the application of the conformal mappings. The stabiligy of the equilibrium of the annulus liquid layer is investigated by way of example.
Sommario Si prosegue lo studio di flussi piani viscosi con frontiera libera applicando l'approssimazione quasistazionaria [1]. L'introduzione della funzione stress-stream bianalitica consente l'uso della teoria delle funzioni olomorfe. La costruzione delle equazioni integrali di Fredholm al contorno proposta qui si basa sulla risoluzione esplicita di due problemi di Hilbert per funzioni analitiche mediante applicazione della tecnica delle trasformazioni conformi. Come esempio si studia la stabilità dell'equilibrio di uno strato liquido anulare.
  相似文献   

9.
A new finite element technique has been developed for employing integral-type constitutive equations in non-Newtonian flow simulations. The present method uses conventional quadrilateral elements for the interpolation of velocity components, so that it can conveniently handle viscoelastic flows with both open and closed streamlines (recirculating regions). A Picard iteration scheme with either flow rate or elasticity increment is used to treat the non-Newtonian stresses as pseudo-body forces, and an efficient and consistent predictor-corrector scheme is adopted for both the particle-tracking and strain tensor calculations. The new method has been used to simulate entry flows of polymer melts in circular abrupt contractions using the K-BKZ integral constitutive model. Results are in very good agreement with existing numerical data. The important question of mesh refinement and convergence for integral models in complex flow at high flow rate has also been addressed, and satisfactory convergence and mesh-independent results are obtained. In addition, the present method is relatively inexpensive and in the meantime can reach higher elasticity levels without numerical instability, compared with the best available similar calculations in the literature.  相似文献   

10.
Two approaches are widely used to describe particle systems: the continuum approach at macroscopic scale and the discrete approach at particle scale. Each has its own advantages and disadvantages in the modelling of particle systems. It is of paramount significance to develop a theory to overcome the disadvantages of the two approaches. Averaging method to link the discrete to continuum approach is a potential technique to develop such a theory. This paper introduces an averaging method, including the theory and its application to the particle flow in a hopper and the particle-fluid flow in an ironmaking blast furnace.  相似文献   

11.
We investigate a recently proposed variational principle with rigid-body constraints and present an extension of its implementation in three dimensional finite elasticity problems. Through numerical examples, we illustrate that the proposed variational principle with rigid-body constraints is applicable to both single field and mixed finite elements of arbitrary order and geometry, e.g. triangular/tetrahedral and quadrilateral/hexagonal elements, in two and three dimensions. Moreover, we demonstrate that, as compared to the commonly adopted approach of discretizing the rigid domains with standard finite elements, the proposed formulation requires neither discretization nor numerical integration in the interior of each rigid domain. As a comparative result, the variational formulation may reduce the total number of degrees of freedom of the resulting finite element system and provide improved accuracy.  相似文献   

12.
In this paper, explicit boundary‐domain integral equations for evaluating velocity gradients are derived from the basic velocity integral equations. A free term is produced in the new strongly singular integral equation, which is not included in recent formulations using the complex variable differentiation method (CVDM) to compute velocity gradients (Int. J. Numer. Meth. Fluids 2004; 45 :463–484; Int. J. Numer. Meth. Fluids 2005; 47 :19–43). The strongly singular domain integrals involved in the new integral equations are accurately evaluated using the radial integration method (RIM). Considerable computational time for evaluating integrals of velocity gradients can be saved by using present formulation than using CVDM. The formulation derived in this paper together with those presented in reference (Int. J. Numer. Meth. Fluids 2004; 45 :463–484) for 2D and in (Int. J. Numer. Meth. Fluids 2005; 47 :19–43) for 3D problems constitutes a complete boundary‐domain integral equation system for solving full Navier–Stokes equations using primitive variables. Three numerical examples for steady incompressible viscous flow are given to validate the derived formulations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
14.
刘敏  李旭 《计算力学学报》2019,36(5):693-698
依据有限元理论,结合内聚力模型法则,推导出二维二次粘结界面单元在大位移情况下的数值格式,得到用形函数表示的单元位移模式、载荷向量和刚度矩阵,并进行了离散化。基于ABAQUS软件的自定义扩展模块,编制了相应的用户单元子程序UEL,通过数值算例验证了该程序的准确性和有效性。这一成果能为在ABAQUS软件中开展相关数值研究,以及开发其他类型的内聚力界面有限单元提供思路和参考。  相似文献   

15.
防风网是煤炭和矿石等物料堆场的重要抑尘设施,能够利用多孔网板形成风速庇护效应,减少扬尘带来的大气污染。基于计算流体力学的数值风洞是预测防风网减风抑尘效率的先进手段,然而网板边界模型及其复杂阻风作用机制一直是风场湍流模拟的难点。本文将浸入边界法与多孔介质模型相结合,通过在NS方程中引入与渗流压降对应的力源项,建立PM-IBM(Porous Medium-Immersed Boundary Method)模型,实现了结构化网格下的防风网数值边界,并应用于堆场扬尘庇护区湍流风场模拟。结果表明,防风网网高大于1.4倍堆场高时,堆顶扬尘风速随网高呈非线性增长;PM-IBM模型结合通用计算流体力学求解器FLUENT,能够快速、高精度地模拟防风网的阻风作用,为堆场扬尘抑制效率评估提供数据支持。  相似文献   

16.
17.
18.
This paper presents a numerical study of the 3D flow around a cylinder which was defined as a benchmark problem for the steady state Navier–Stokes equations within the DFG high‐priority research program flow simulation with high‐performance computers by Schafer and Turek (Vol. 52, Vieweg: Braunschweig, 1996). The first part of the study is a comparison of several finite element discretizations with respect to the accuracy of the computed benchmark parameters. It turns out that boundary fitted higher order finite element methods are in general most accurate. Our numerical study improves the hitherto existing reference values for the benchmark parameters considerably. The second part of the study deals with efficient and robust solvers for the discrete saddle point problems. All considered solvers are based on coupled multigrid methods. The flexible GMRES method with a multiple discretization multigrid method proves to be the best solver. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
A new numerical manifold (NMM) method is derived on the basis of quartic uniform B-spline interpolation. The analysis shows that the new interpolation function possesses higher-order continuity and polynomial consistency compared with the conven- tional NMM. The stiffness matrix of the new element is well-conditioned. The proposed method is applied for the numerical example of thin plate bending. Based on the prin- ciple of minimum potential energy, the manifold matrices and equilibrium equation are deduced. Numerical results reveal that the NMM has high interpolation accuracy and rapid convergence for the global cover function and its higher-order partial derivatives.  相似文献   

20.
This paper presents numerical examples for the moving grid finite element algorithm derived in Part Ito solve the non-linear coupled set of PDEs governing immiscible multiphase flow in porous media in one dimension. Examples include single- and double-front simulations for two- and three-phase flow regimes and incorporating a mass sink. The modelling approach is shown to achieve significant savings in computation time and memory allocation when compared with fixed grid solutions of equivalent accuracy. This work includes sensitivity analyses for the parameters which are incorporated in the grid adaptation method, including the curvature weights, artificial viscosity and artificial repulsive force. It is found that the curvature weights are exponential functions of the negative ratio of the square root of the domain length to the number of discrete nodes. These weighting parameters are also shown to depend upon the shape of the front. On the basis of the examined simulations, it is recommended that artificial viscosity be neglected in the solution of the coupled non-linear set of PDEs governing multiphase flow in porous media. Similarly, use of a repulsive force is found to be unnecessary in simulations involving the migration of two liquid phases. For multiphase flows incorporating a gas phase it is recommended to use a non-zero value for the repulslive force to avoid development of an ill-conditioned nodal distribution matrix. An equation to evaluate the repulsive force under these circumstances is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号