首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elastic behavior of a screw dislocation which is positioned inside the shell domain of an eccentric core–shell nanowire is addressed with taking into account the surface/interface stress effect. The complex potential function method in combination with the conformal mapping function is applied to solve the governing non-classical equations. The dislocation stress field and the image force acting on the dislocation are studied in detail and compared with those obtained within the classical theory of elasticity. It is shown that near the free outer surface and the inner core–shell interface, the non-classical solution for the stress field considerably differs from the classical one, while this difference practically vanishes in the bulk regions of the nanowire. It is also demonstrated that the surface with positive (negative) shear modulus applies an extra non-classical repelling (attracting) image force to the dislocation, which can change the nature of the equilibrium positions depending on the system parameters. At the same time, the non-classical solution fails when the dislocation approaches very close to the surface/interface with negative shear modulus. The effects of the core–shell eccentricity and nanowire diameter on dislocation behavior are discussed. It is shown that the non-classical surface/interface effect has a short-range character and becomes more pronounced when the nanowire diameter is smaller than 20 nm.  相似文献   

2.
The elastic behavior of an edge dislocation located inside the core of a core–shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the core–shell size on the image forces acting on the dislocation. The repelling and attracting effects of the interface parameter on the image force are discussed. The equilibrium position of the dislocation is also studied. The dislocation strain energy in the interface elasticity framework is only slightly different from that of traditional elasticity when the dislocation is placed in the central region of the core and reaches its maximum value when it is located near the core–shell interface.  相似文献   

3.
The elastic behavior of an edge dislocation, which is positioned outside of a nanoscale elliptical inhomogeneity, is studied within the interface elasticity approach incorporating the elastic moduli and surface tension of the interface. The complex potential function method is used. The dislocation stress field and the image force acting on the dislocation are found and analyzed in detail. The difference between the solutions obtained within the classical-elasticity and interface-elasticity approaches is discussed. It is shown that for the stress field, this difference can be significant in those points of the inhomogeneity-matrix interface, where the radius of curvature is smaller and which are closer to the dislocation. For the image force, this difference can be considerable or dispensable in dependence on the dislocation position, its Burgers vector orientation, and relations between the elastic moduli of the matrix, inhomogeneity and their interface. Under some special conditions, the dislocation can occupy a stable equilibrium position in atomically close vicinity of the interface. The size effect is demonstrated that the normalized image force strongly depends on the inhomogeneity size when it is in the range of several tens of nanometers, in contrast with the classical solution where this force is always constant. The general issue is that the interface elasticity effects become more evident when the characteristic sizes of the problem (inhomogeneity size, interface curvature radius and dislocation-interface spacing) reduce to the nanoscale.  相似文献   

4.
A screw dislocation outside an infinite cylindrical nano-inhomogeneity of circular cross section is considered within the isotropic theory of gradient elasticity. Fields of total displacements, elastic and plastic distortions, elastic strains and stresses are derived and analyzed in detail. In contrast with the case of classical elasticity, the gradient solutions are shown to possess no singularities at the dislocation line. Moreover, all stress components are continuous and smooth at the interface unlike the classical solution. As a result, the image force exerted on the dislocation due to the differences in elastic and gradient constants of the matrix and inhomogeneity, remains finite when the dislocation approaches the interface. The gradient solution demonstrates a non-classical size-effect in such a way that the stress level inside the inhomogeneity decreases with its size. The gradient and classical solutions coincide when the distances from the dislocation line and the interface exceed several atomic spacings.  相似文献   

5.
Hao-Peng Song  Cun-Fa Gao 《Meccanica》2012,47(5):1097-1102
The interaction between a screw dislocation and an elastic semi-cylindrical inhomogeneity abutting on a rigid half-plane is investigated. Utilizing the image dislocations method, the closed form solutions of the stress fields in the matrix and the inhomogeneity region are derived. The image force acting on the dislocation is also calculated. The results were used to study the interaction between a screw dislocation and a rigid wedge inhomogeneity with an elastic circular inhomogeneity at the tip by means of conformal mapping. The results show that an unstable equilibrium point of the dislocation near the semi-cylindrical inhomogeneity is found when the inhomogeneity is softer than the matrix. Moreover, the force on the dislocation is strongly affected by the position of the dislocation and the shear modulus of the semi-circular inhomogeneity. Positive screw dislocations can reduce the SIF of the rigid wedge inhomogeneity (shielding effect) only when it located in the lower half-plane. The shielding effect increases with the increase of the shear modulu of both the matrix and the inhomogeneity and increases with the increase of the wedge angle. The shielding effect (or anti-shielding effect) reaches the maximum when the dislocation tends to the wedge inhomogeneity interface.  相似文献   

6.
Dislocation mobility and stability in inclusions can affect the mechanical behaviors of the composites. In this paper, the problem of an edge dislocation located within a nanoscale cylindrical inclusion incorporating interface stress is first considered. The explicit expression for the image force acting on the edge dislocation is obtained by means of a complex variable method. The influence of the interface effects and the size of the inclusion on the image force is evaluated. The results indicate that the impact of interface stress on the image force and the equilibrium positions of the edge dislocation inside the inclusion becomes remarkable when the radius of the inclusion is reduced to nanometer scale. The force acting on the edge dislocation produced by the interface stress will increase with the decrease of the radius of the inclusion and depends on the inclusion size which differs from the classical solution. The stability of the dislocation inside a nanoscale inclusion is also analyzed. The condition of the dislocation stability and the critical radius of the inclusion are revised for considering interface stresses.  相似文献   

7.
The electro-elastic stress field due to a piezoelectric screw dislocation near the tip of a wedge-shaped bi-material interface is derived. The screw dislocation is subjected to a line charge and a line force at the core. The explicit closed-form analytical solutions for the stress field are derived by means of the complex variable and conformal mapping methods. The stress and electric intensity factors of the wedge tip induced by the dislocation and the image force acting on the dislocation are also formulated and calculated. The influence of the wedge angle and the different bi-material constant combinations on the image force is discussed. Numerical results for three particular wedge angles are calculated and compared.  相似文献   

8.
Interaction between a screw dislocation dipole and a mode III interface crack is investigated. By using the complex variable method, the closed form solutions for complex potentials are obtained when a screw dislocation dipole lies inside a medium. The stress fields and the stress intensity factors at the tip of the interface crack produced by the screw dislocation dipole are given. The influence of the orientation, the dipole arm and the location of the screw dislocation dipole as well as the material mismatch on the stress intensity factors is discussed. The image force and the image torque acting on the screw dislocation dipole center are also calculated. The mechanical equilibrium position of the screw dislocation dipole is examined for various material property combinations and crack geometries. The results indicate that the shielding or anti-shielding effect on the stress intensity factor increases abruptly when the dislocation dipole approaches the tip of the crack. Additionally, the disturbation of the interface crack on the motion of the dislocation dipole is also significant.  相似文献   

9.
Interaction between a screw dislocation dipole and a mode Ⅲ interface crack is investigated. By using the complex variable method, the closed form solutions for complex potentials are obtained when a screw dislocation dipole lies inside a medium. The stress fields and the stress intensity factors at the tip of the interface crack produced by the screw dislocation dipole are given. The influence of the orientation, the dipole arm and the location of the screw dislocation dipole as well as the material mismatch on the stress intensity factors is discussed. zThe image force and the image torque acting on the screw dislocation dipole center are also calculated. The mechanical equilibrium position of the screw dislocation dipole is examined for various material property combinations and crack geometries. The results indicate that the shielding or anti-shielding effect on the stress intensity factor increases abruptly when the dislocation dipole approaches the tip of the crack. Additionally, the disturbation of the interface crack on the motion of the dislocation dipole is also significant.  相似文献   

10.
研究了多晶体材料中螺型位错偶极子和界面裂纹的弹性干涉作用.利用复变函数方法,得到了该问题复势函数的封闭形式解答.求出了由位错偶极子诱导的应力场和裂纹尖端应力强度应子,分析了偶极子的方向,偶臂和位置以及材料失配对应力强度因子的影响.推导了作用在螺型位错偶极子中心的像力和力偶矩,并讨论了界面裂纹几何条件和不同材料特征组合对位错偶极子平衡位置的影响规律.结果表明,裂纹尖端的螺型位错偶极子对应力强度因子会产生强烈的屏蔽或反屏蔽效应.同时,界面裂纹对螺型位错偶极子在材料中运动有很强的扰动作用.  相似文献   

11.
By applying semi-analytical point-force Green's functions obtained via the Stroh formulism, we derive simple line integrals to calculate the elastic displacement and stress fields for a three-dimensional dislocation loop in an anisotropic bimaterial system. The solutions for the case of anisotropy are more convenient for treating an arbitrary dislocation loop compared with traditional area integration. With this new formulation, we numerically examine the displacement, stress, and energy due to the interaction between a dislocation loop and the bimaterial interface in an Al–Cu system. The interactive image energy due to the elastic moduli mismatch across the interface is then numerically evaluated. The result shows that a dislocation loop is subjected to an attractive force by the interface when it lies in the stiff material, and a repulsive force when it lies in the soft material. Moreover, the dependence of the interactive image energy of a dislocation loop on the position and size of the dislocation loop are also demonstrated and discussed. Significantly, it is found that the interactive image energy for a dislocation loop depends only on the ratio d/a, where a is the loop diameter and d is its distance to the interface. The examples studied provide benchmark solutions for anisotropic bimaterial dislocation problems.  相似文献   

12.
This paper attempts to investigate the problem for the interaction between a uniformly subsonic moving screw dislocation and interface cracks in two dissimilar anisotropic materials. Using Riemann–Schwarz’s symmetry principle integrated with the analysis singularity of complex functions, we present the general elastic solutions of this problem and the closed form solutions for interface containing one and two cracks. The expressions of stress intensity factors at the crack tips and image force acting on moving dislocation are derived explicitly. The results show that the stress intensity factors at the crack tips decrease with increasing velocity of dislocation, and larger dislocation velocity leads to the equilibrium position of dislocation leaving from crack tips. The presented solutions contain previously known results as the special cases.  相似文献   

13.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

14.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

15.
This paper investigated the interaction between an edge dislocation and a nonuniformly coated circular inclusion. Based on the technique of conformal mapping and the method of analytical continuation in conjunction with alternating technique, the solutions to plane elasticity problems for three dissimilar media are derived explicitly in a series form. For a limiting case when the thickness of the interphase layer is uniform, the derived analytical solutions of this paper are reduced to exactly the same results available in the literature. The image force acting on the dislocation is then determined by using the Peach–Koehler formula. It is found that the combination of material constants and nonuniformity of the interphase thickness will exert a significant influence on the dislocation force.  相似文献   

16.
压电螺型位错和共线界面刚性线夹杂的干涉效应   总被引:2,自引:1,他引:1  
研究了压电材料中压电螺型位错和共线界面导电刚性线夹杂的电弹干涉效应.运用复变函数解析延拓技术与奇性主部分析方法,获得了该问题的一般解答.作为算例,求出了界面含一条刚性线夹杂时两种压电介质区域广义应力函数的封闭形式解.导出了作用在位错上的像力和刚性线夹杂表面剪应力和电位移的解析表达式.讨论了界面刚性线长度,两种材料的剪切模量比和压电系数比对位错力和刚性线表面剪应力的影响规律.为进一步研究该类问题提供了一个基本解。  相似文献   

17.
This research is devoted to the study of anisotropic bimaterials with Kelvin-type viscoelastic interface under antiplane deformations. First we derive the Green’s function for a bimaterial with a Kelvin-type viscoelastic interface subjected to an antiplane force and a screw dislocation by means of the complex variable method. Explicit expressions are derived for the time-dependent stress field induced by the antiplane force and screw dislocation. Also presented is the time-dependent image force acting on the screw dislocation due to its interaction with the Kelvin-type viscoelastic interface. Second we investigate a rectangular inclusion with uniform antiplane eigenstrains embedded in one of the two bonded anisotropic half-planes by virtue of the derived Green’s function for a line force. The explicit expressions for the time-dependent stress field induced by the rectangular inclusion are obtained in terms of the simple logarithmic and exponential integral functions. It is observed that in general the stresses exhibit the logarithmic singularity at the four corners of the rectangular inclusion. Our results also show that when one side of the rectangular inclusion lies on the viscoelastic interface, the interfacial tractions are still regular at the two corners of the inclusion which are located on the interface. Last we address a finite Griffith crack normal to the viscoelastic interface by means of the obtained Green’s function for a screw dislocation. The crack problem is formulated in terms of a resulting singular integral equation which is solved numerically. The time-dependent stress intensity factors at the two crack tips are obtained and some interesting features are discussed.  相似文献   

18.
The time-harmonic dynamical stress field in a system comprising a pre-stressed orthotropic layer and orthotropic half-plane is studied within the scope of the piecewise homogeneous body model utilizing the three-dimensional linearized theory of elastic waves in an initially stressed body. The main focus is on the influence of the mechanical properties of the constituent materials and the initial stresses present on the “resonance” values of the normal stress acting on the interface plane and on the “resonance” values of the frequency of the external point-located force. The numerical results are presented and discussed. In particular, it is shown that the values of the normal stress decrease with a decrease in the modulus of elasticity of the materials along the thickness of the covering layer.  相似文献   

19.
This paper attempts to investigate the problem for the interaction between a uniformly moving screw dislocation and interface rigid lines in two dissimilar.anisotropic. materials. Integrating Riemann-Schwarz's symmetry principle with the analysis singularity of complex functions, we present the general elastic solutions of this problem and the closed form solutions for interfaces containing one and two rigid lines. The expressions of stress intensity factors, at the rigid line tips and image force acting on moving dislocation are derived explicitly. The results show that dislocation velocity has an antishielding effect on the rigid line tip and a larger dislocation velocity leads to the equilibrium position of dislocation closing with the rigid line. The presented solutions contain previously known results as the special cases.  相似文献   

20.
The influence of the third order elastic constants on the dynamical (time-harmonic) axisymmetric interface stress field in the system which comprises the half-space and the pre-stretched covering layer is investigated within the framework of the piecewise homogeneous body model by employing the three-dimensional linearized theory of elastic waves in initially stressed bodies. The elasticity relations for the layer and half-space materials are given through the Murnaghan potential. It is assumed that the force acting on the free face plane of the covering layer is a time-harmonic point-located normal force. The influences due to both of the quantities of the pre-stretching of the layer and the third order elastic constants of the layer material on the interface normal stress are analysed. The numerical results are presented for concrete selected materials such as steel, aluminium and acrylic plastic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号