首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel homologous series of thermotropic derivatives containing a heterocyclic ring was synthesized and studied with a view to understanding and establishing a relation between liquid crystal (LC) properties and the molecular structure of chalconyl derivative in general. The series comprises 12 homologues, of which smectogenic LC property commences from the decyloxy (C10) homologue and continues for C12, C14, and C16 homologues. Homologues C1 to C8 are non-liquid crystals. Exhibition of nematogenic mesophase is totally absent. Transition and melting temperatures were determined by an optical polarizing microscope equipped with a heating stage. Spectral and analytical data confirmed the molecular structures of homologues. The textures of smectic mesophase are A or C, and are determined by a miscibility method. The average thermal stability of the smectic phase is 113.57°C. The mesogenic phase length ranges between 4.1°C and 11.1°C. Thus, it is a middle-ordered melting-type series of shorter range of liquid crystallinity with absence of nematogenic character. Some LC properties of the present series are compared with a structurally similar known homologous series.  相似文献   

2.
A novel homologous series of thermotropic liquid crystals α-4-(4′-n-alkoxy benzoyloxy phenyl) β-2″-chloro benzoyl ethylenes have been synthesized and studied with a view to understand and establish the effect of molecular structure on liquid crystal (LC) properties with reference to molecular flexibility in isomeric series with differing positional status of same functional group. Novel homologues series consist of 12 homologues C1 to C16. C1, C2, and C3 homologues are nonliquid crystals (NLC) and rest of the homologues are liquid crystals. C10 to C16 homologues are enantiotropically smectogenic plus nematogenic and C4 to C8 homologues are enantiotropic nematic. The texture of nematogenic derivatives is threaded or schlieren and that of the smectic mesophase are focal conic of the type smectic A or C. Analytical, thermal and spectral data supported molecular structures of novel homologues. Transition temperatures as determine by a hot stage polarizing optical microscopy (POM) were plotted against number of carbon atom present in n-alkyl chain ‘R’ of left n-alkoxy (-OR) group and the phase transition curves Cr–I/M, Sm–N, N–I were obtained on linking like or related points. The odd–even effect is observed for the N–I transition curve and thus transition curves behaved in normal manner. The even-membered nematic transition curve occupied higher position than the odd-membered transition curve. Present series is predominantly nematogenic and partly smectogenic with middle-ordered melting type.  相似文献   

3.
An azoester homologues series: RO?C6H4?COO?C10H6?N?N?C6H4?OC5H11 (para) as novel liquid crystalline (LC) materials has been synthesized and studied with a view to understanding and establishing the effects of molecular structure on LC properties with reference to laterally substituted phenyl ring and terminally substituted ?OR and ?OC5H11 (n) groups; including ?COO? and ?N?N? central bridges. Novel homologous series of thermotropic LC variety consists of thirteen homologues (C1 to C18). C1 to C3 derivatives are nonliquid crystal (NLC); C4 is only nematogenic and C5 to C18 are smectogenic plus nematogenic. All the mesogenic homologues (C4 to C18) are enantiotropically nematogenic or/and smectogenic as confirmed by a polarizing optical microscopy (POM) equipped with a heating stage. Transition curves Cr-I/M, Sm?N, and N?I behaved in normal manner in a phase diagram. Odd-even effect is exhibited by Sm?N and N?I transition curves. Analytical, spectral and thermal data confirms the molecular structure of novel homologues. Novel azoester series is predominantly nematogenic and partly smectogenic whose mesogenic temperatures ranges minimum to maximum from 79.0°C to 162.0°C. Thermal stability for smectic and nematic are 128.2°C and 147.7 °C, respectively. Thus, it is a middle ordered melting type of novel series whose total mesophaselength ranges from 20.0°C to 56.0°C. Textures of nematic are threaded or schlieren and that of smectic are smectic A or C.  相似文献   

4.
A novel series of liquid crystal (LC) materials of Schiff's bases viz. RO-C6H4?CH?CH?COO?C6H4?N?CH?C6H4?Br (ortho) is synthesized and studied with a views to understanding and establishing the effect of molecular structure on liquid crystal properties and to provide novel thermotropic LC material to the scientific and technological community of research interest. The novel series consists of thirteen members (C1 to C8, C10, C12, C14, C16 &; C18). All the members of a series are enantiotropic liquid crystals. Smectic (C10?C18) and nematic (C1?C18) property commence from C10 and C1 homologue respectively. Transition temperatures and the textures of homologues were determined using a polarizing optical microscope (POM) equipped with a heating stage. Transition curves Cr-M, Sm-N and N-I of a phase diagram behaved in normal manner. Odd–even effect is absent for Sm-N transition curve, but it is present for N-I curve. Sm-N transition curve is extrapolated to C8 and C6 nonsmectogenic homologues to determine and predict their latent ability for exhibition of smectic property. Analytical and spectral data confirms the molecular structures of homologues. Thermal stabilities of smectic and nematic are 85.4°C and 130.1°C °C whose upper and lower total mesophase length vary from 58.0°C to 06.0°C at the C10 and C1 = C5 = C6 homologue, respectively. Textures of nematic phase are threaded or Schlieren and smectic phase are of type A or C. LC properties of present novel series are compared with structurally series known series. Thus, present novel series is predominantly nematogenic and partly smectogenic with middle ordered melting type and considerable total mesophase length range.  相似文献   

5.
A novel series of chalconyl homologue derivatives with RO.C6H4.COO.C6H4.CO.CH:CH-C6H4.N.(CH3)2 (Para) have been synthesized and thermotropically studied with a view to understanding and establishing the effect of molecular structure on mesomorphic behavior of the novel homologues. The series consists of thirteen homologues (C1 to C18). C7 to C18 homologues are smectogenic, C4 to C18 nematogenic and C1 to C3 nonmesomorphic. Thus, novel chalconyl series is predominantly nematogenic and partly smectogenic. Transition temperatures and textures of mesophases were determined using an polarizing optical microscope (POM) equipped with a heating stage. Analytical and spectral data confirmed molecular structures of homologues. Phase transition curves showing phase behavior in a phase diagram behaved in normal manner. Thermal stability for smectic and nematic are relatively low at 59.6 °C and 76.6 °C respectively whose, smectogenic and nematogenic phase length vary from 12 to 16 °C and 06 to 20 °C, respectively. Mesomorphic behaviors of the present series are compared with a structurally similar known homologous series.  相似文献   

6.
A novel ester homologous series of rich mesomorphism and low temperatures with unexpected phase behaviors of eleven homologues was synthesized and studied with a view to understanding and establishing the relation between mesomorphic behaviour and the molecular structure of a series 4-(4′-n-alkoxybenzoyloxy)-4″-chlorobenzyl cinnamates. All the members of the novel series are enantiotropically smectogenic and the octyloxy (C8) to hexadecyloxy (C16) homologues are enantiotropically nematogenic, in addition to smectogenic. Odd–even effect is observed for Sm?I/Sm?N transition curve but it is absent for N?I transition curve. Textures of nematic phase are threaded or Schlieren and that of the smectic phase are fan shaped or batonates of smectic-A type phase or Smectic-C type for C16 homologues as judged directly from a heating stage of an optical polarizing microscopy. Analytical and spectral data confirmed the molecular structures of novel homologues. Mesomorphic properties of present series are compared with the structurally similar other known series. The average smectic and nematic thermal stabilities are 92.78°C and 100.8°C, respectively. Mesophase length minimum to maximum for smectic and nematic are 21.0°C to 31.1°C and 8.4°C to 42.6°C respectively. Thus, the present novel series is partly nematogenic and fully smectogenic with considerable degree of mesomorphism and low melting type.  相似文献   

7.
The titled azoester liquid crystalline homologous series consists of eleven homologues. The pentyl to tetradecyl derivatives of the series are nematogenic without exhibition of smectogenic character. Rest of the members of the series are nonliquid crystalline in nature. Textures of the nematic mesophase are schlieren or threaded type. Transition curves in the phase diagram showed normal phase behavior. Transition temperatures and liquid crystal behavior observed under an optical polarizing microscope equipped with a heating stage. An odd even effect is observed for nematic-isotropic transition curve. Analytical and spectral data confirms the structures of the molecules. Present homologous series is predominant nematogenic and partly nonmesogenic. Average thermal stability for nematic is 125.33°C and nematogenic mesophase length varies between 12°C to 48°C at tetradecyl (C14) and octyl (C8) derivatives, respectively.  相似文献   

8.
Entirely smectogenic novel chalconyl homologue derivatives of thermotropic liquid crystals (LC) have been synthesized with a view to understanding and establishing the effects of molecular structure on liquid crystal properties and the degree of liquid crystallinity. The homologous series consists of 12 (C1 to C16) homologues with absence of nematogenic character throughout the present series. The textures of smectic phase are fan shaped or batonnet type of smectic-A or of smectic-C. Phase transition temperatures and thermotropic data were determined by an optical polarizing microscope equipped with a heating stage. The smectic–isotropic (Sm-I) phase transition curve and the Cr-Sm transition curve behave in normal manner in the phase diagram. Analytical and spectral data confirm molecular structures of novel homologues. The average thermal stability for smectic is 139.42°C and the mesogenic phase length ranges from 3.5°C to 79.6°C. Mesogenic properties are compared with the structurally similar known series.  相似文献   

9.
A novel homologous series containing vinyl ester and azomethane central bridges and n-alkoxy as well as 3″,4″-dimethyl groups as flexible terminal/lateral groups viz. RO?C6H4?CH = CH?COO?C6H4?N?CH?C6H3-(CH3)2 have been synthesized and studied with a view to establishing the relation between molecular structure and thermotropic liquid crystal (LC) properties with reference to molecular flexibility within the series. The series consists of twelve homologues (C1 to C16). C6 and C7 homologues are smectogenic plus nematogenic and C8 to C16 homologues are only smectogenic, and the rest of the homologues (C1 to C5) are nonmesomorphic. Transition temperatures and the textures of the homologues were determined using an optical polarizing microscope equipped with a heating stage (POM). The textures of a nematic phase are threaded or Schlieren and that of a smectic phase are of the A or C type. Analytical, thermal and spectral data support the molecular structures. Smectic and nematic thermal stabilities are 116.85°C and 147.5°C, respectively. Whose Sm?N/I and N-I mesophase lengths are varied between 15°C to 21°C and 25°C to 62°C, respectively. The novel compounds are compared with structurally-similar series.  相似文献   

10.
A novel homologous series of liquid crystals (LC) of chalconyl derivatives is synthesized and studied with a view to understanding and establishing the effects of molecular structure on liquid crystal properties. The novel series consists of 12 homologues. Nematogenic LC property commences from C3 and continues up to C14 and the smectogenic mesophase is exhibited from C4 to C16. The C3 homologue is a monotropic nematic and the rest of the homologues are enantiotropically smectic and nematic or only smectic (C16). Transition curves Cr-Sm, Sm-N, Cr-I, and N-I behave in normal manner with exhibition of odd-even effect, showing phase behaviors of the series.  相似文献   

11.
A novel azoester homologous series of liquid crystalline (LC) compounds: RO?C6H4-COO?C10H6-N:N-C6H4?OC4H9(n) without lateral substitution has been synthesized and studied with a view to understanding and establishing the effects of molecular structure on thermotropic LC substances with reference to tailed-end group. The novel homologous series consists of 13 homologs (C1 to C18) whose nematogenic and smectogenic mesomorphism commences enantiotropically from C6 and C12 members of the series, respectively. The C12–C18 homologs are smectogenic and C6–C18 are nematogenic, of which C12–C18 homologs are smectogenic plus nematogenic. The C1–C5 homologs are nonmesogenic. Transition temperatures and the textures of the homologs were determined and identified by an optical polarizing microscope (POM) equipped with a heating stage. Textures of a nematic phase are threaded or Schlieren and that of the smectic phase are of the type A or C. Transition curves Cr-M/I, Sm-N and N-I of a phase diagram behaved in normal manner except N-I transition temperature of C10 homolog which deviated by 9°C–10°C from normal behavior. N-I transition curve exhibited odd-even effect. Analytical, spectral, and thermal data confirms the molecular structures of homologs. Thermal stability for smectic and nematic are 115.5°C and 138.5°C, respectively whose corresponding mesophaselengths are varied from 10.0°C to 16.0°C and 13.0°C to 24.0°C, respectively. Group efficiency order for smectic and nematic are derived from comparative study of structurally similar analogous series; as smectic: ?OC4H9 (n) > ?CH3 > ?H; Nematic: ?H > ?OC4H9 (n) > ?CH3  相似文献   

12.
Novel liquid crystal (LC) materials of ester derivatives were synthesized and studied with a view to understanding and establishing the effects of molecular structure on LC properties. The novel molecules consist of two phenyl rings bonded through –COO– central group and a laterally substituted methoxy group with –OCnH2n+1 as well as –COOCH3 terminal end groups, and yielded 12 homologous members of an ester series. The C1 to C3 members are nonmesomorphic, the C4 to C12 members are enantiotropic nematic only, and the C14 to C16 members are enantiotropically smectogenic in addition to nematogenic. Transition temperatures and the textures of LC state were observed through an optical polarizing microscope (POM) equipped with a heating stage. The textures of nematic phase are threaded or Schlieren, and that of smectic phase are focal conic of the type A or C. Transition curves of a phase diagram behave in normal manner with the exhibition of an odd-even effect (only N-I). Analytical and spectral data support the molecular structures of the novel ester derivatives. The LC properties of the present series are compared with structurally similar other known series. The average thermal stability of the series is 93°C for smectic and 120.88°C for nematic and the mesogenic phase length ranges between 2°C and 46°C.  相似文献   

13.
A novel homologous series of mesogens was synthesized and studied with a view to understanding and establishing the relations between molecular structure and liquid crystal properties. Eleven members of the series were synthesized. Mesogenic behavior commences from the C6 member and continues up to the C14 member. The rest of the members, C1 to C5 and C16, are non-mesogenic. Mesogenic homologues (C6 to C14) are enantiotropically nematogenic. Textures of nematic phase are threaded or Schlieren. Transition temperatures were determined by an optical polarizing microscope equipped with a heating stage. Analytical and structural data confirm the molecular structures of homologues. Thermal stability for nematic phase is 198.0°C. Mesomorphic phase length ranges from 11.0°C to 50.0°C. Cr-I/N and N-I transition curves of a phase diagram behave in normal manner from C1 to C12 members, and higher members C14 and C16 deviated from normal behavior. Mesogenic properties of present novel ester series are compared with the structurally similar series. Odd-even effect is missing for the N-I transition curve. Thus, the present series is partly nematogenic without exhibition of smectic property whose transition temperatures vary between 153°C and 210°C.  相似文献   

14.
A novel homologous series of thermotropic mesomorphs has been synthesized and studied with a view to understanding and establishing the effect of molecular structure on mesomorphic properties with reference to rigidity and flexibility of the homologues series: RO-C6H4-CH?CH-CO-C6H4-OC18H37(n). The novel homologous series comprises 13 novel homologues (C1 to C18), from which 11 homologues are enantiotropically mesogenic (C3 to C18). Smectogenic mesophase commences from C7 homologue, and nematogenic mesophase is exhibited by C3 to C18 homologues in enantiotropic manner. Thus, C7 to C18 homologues are enantiotropically smectogenic plus nematogenic. Textures of smectic phase are of the type A or C, and that of nematic phase are threaded or Schlieren as confirmed through an optical polarizing microscope equipped with a heating stage. Transition curve of a phase diagram behaved in a normal manner except N-I transition curve, which shows minor deviating trend (C12 to C18) from expected normal behavior. An odd-even effect is exhibited by N-I and Sm-N transition curves. Analytical, spectral, and thermal data confirm the molecular structures of novel homologues. Thermal stabilities for smectic and nematic are 52.7°C and 66.6°C, respectively, whose total mesophase lengths range from 12.0°C to 28.0°C. Thus, novel series of chalcones is a low melting series whose mesogenic transition temperatures vary between 38.0 and 86.0°C.  相似文献   

15.
16.
A novel homologous series of liquid crystal (LC) derivatives of general structure: RO·C6H4·COO·C6H3·OCH3(ortho)CH = CH·COO·(n)C5H11 was synthesized and studied with a view to understanding the effect of molecular structure on liquid crystal behavior with reference to lateral –OCH3 and terminal end group. Homologous series consists of 12 derivatives (C1–C16), the first five (C1–C5), and the last (C16) members are not liquid crystals and the rest of the homologs (C6–C14) are enantiotropically smectogenic without exhibition of the nematic phase. The textures of the smectic phases are focal conic fan shaped or batonets of smectic-A or smectic-C. Average thermal stability for smectic is 81.8°C and mesophase length ranges from 9°C to 31°C. Transition curves of a phase diagram (Sm-I and Cr-Sm/I) behave in a normal manner. The Sm-I transition curve exhibits an odd-even effect. Analytical and spectral data support the molecular structures. The series is smectogenic of a middle ordered melting type. LC properties of the present series are compared with structurally similar known homologous series. Transition temperatures were determined by an optical polarizing microscope equipped with a heating stage.  相似文献   

17.
A novel ester homologous series was synthesized and studied with a view to understanding and establishing the effects of molecular structure on liquid crystal properties with a common laterally substituted –OCH3 group and changing terminal groups. The novel series consists of twelve members. The C1 to C3 members are not liquid crystals and the rest of the members C4 to C16 are smectogenic without exhibition of nematic character. Textures of smectic phase are focal conic fan shaped of the type A or C. The transition temperatures and textures of smectic mesophases were observed through hot stage polarizing microscopy (POM). The transition curves (Cr-I or Cr-M and Sm-I) behaved in normal manner. Analytical and spectral data support the molecular structures. Average thermal stability for smectic is 77.25°C and smectogenic mesophase ranges from 15°C to 33°C. Liquid crystal properties of the present series are compared with structurally similar homologous series. Thus, the series is smectogenic only with three homologs nonmesogenic.  相似文献   

18.
A novel cinnamate ester homologous series has been synthesized and studied with a view to understanding and establishing the effects of molecular structure on liquid crystal (LC) properties with a focus on the highly polar methoxy group as a lateral substituent. The series consists of twelve homologs; of which C1–C5 are nonmesogenic, and the rest of the homologs are enantiotropically smectogenic or and nematogenic. The texture of nematic phases is threaded or Schlieren and that of the smectic is either smectic A or C, as recognized and determined through an optical polarizing microscope equipped with a heating stage. The Sm-N I and N-I transition curves exhibit odd-even effects and behave in normal manner. The Cr-I M behaves in normal manner. Analytical and spectral data confirm the molecular structures of homologs. The average thermal stabilities for smectic and nematic are 125.3 C and 129.8 C, respectively, whose total mesophase length varies from 13 C to 51 C. Some LC properties of present series are compared with the structurally similar known series.  相似文献   

19.
A novel mesogenic ester homologous series is synthesized and studied with a view to understanding and establishing the effect of laterally substituted -OCH3 on mesomorphic behavior. The series consists of twelve members. C1 to C4 members are nonmesogenic, C6 to C12 are smectogenic in addition to nematogenic, and C14 to C16 are only smectogenic. The textures of smectic and nematic phases are A or C type and threaded or Schlieren, respectively. The transition curves in a phase diagram exhibit an odd–even effect and behave in normal manner except for the C14 and C16 derivatives in Sm-I transitions. Thermometric data were determined by an optical polarizing microscope equipped with a heating stage. Average thermal stability for smectic and nematic are 107.7°C and 121.0°C, respectively. Smectogenic and nematogenic mesophase length ranges from 11.0 to 44.0°C and 12.0°C to 39.0°C, respectively. The mesomorphic properties of present series are compared with structurally similar other known series. Thus, present series is predominantly smectogenic and partly nematogenic of middle ordered melting type.  相似文献   

20.
A novel homologous series RO-C6H4-COO-C6H3-(NO2)-CO-CH?CH-C6H4OC18H37(n) para of chalconyl ester derivatives have been synthesized and studied with view to understanding the effect of an ortho substituted nitro group on thermotropic liquid crystal (LC) behavior. The novel homologous series consists of thirteen homologues (C1 to C18). The C1 to C4 homologues are nonliquid crystal (NLC) and the rest of the homologues (C5 to C18) homologues are enantiotropically nematogenic without exhibition of a smectic phase even in the monotropic condition. Transition temperatures were determined by an optical polarizing microscope (POM) equipped with a heating stage. Texture of nematic phase are threaded or Schlieren. Analytical, thermal and spectral data supported molecular structure of homologues. Thermal stability for nematic is 147.1°C whose mesophase lengths vary between 16.0 and 32.0°C the C7 and C18 homologues, respectively, and their mesogenic exhibition range between 96.0 and 166.0°C. Thus, the present novel series is middle ordered melting type, Group efficiency order is derived from comparative study of structurally similar series. The transition curves of a phase diagram behaved in normal manner except C10 and C16 homologues. Odd-even effect is observed for N-I transition curve. Group efficiency order derived is: -OC12H25 (n) > -OC18H37 (n) > -OC18H37 (n).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号