首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on optical parametric oscillators (OPOs) based on large aperture periodically poled KTiOPO4 (PPKTP) and RbTiOAsO4 (PPRTA) pumped with high pulse energy and high average power Q-switched solid-state lasers. The OPOs were pumped with 1064-nm pulses of a diode-pumped Nd:YVO4 laser at 20 kHz repetition rate. The emitted signal wavelengths were 1.72 μm and 1.58 μm and the idler wavelengths were 2.79 μm and 3.26 μm, respectively. Pumping the PPKTP OPO with 7.2 W and the PPRTA OPO with 8 W average power, 2 W and 1.3 W total OPO output powers were generated. Two-dimensional measurements of the total OPO output power, the signal wavelength and the signal bandwidth in dependence on the crystal location indicated a good uniformity of the quasiphasematching structure over the entire 3-mm-thick crystals. This allowed pumping with larger pump beams and therefore with pulse energies of tens of millijoules. Pumping with different flash-lamp-pumped lasers, good OPO performance and high output pulse energies could be achieved for all pump lasers. Maximum input pulse energies of 56 mJ gave output pulse energies of as much as 18 mJ. The temperature tuning behaviors of both OPOs were measured, showing excellent agreement with calculated temperature tuning curves. New equations for temperature dispersion in RTA are presented. These results show that large-aperture PPKTP and PPRTA crystals are well suited for tunable nanosecond OPO operation with multi-watt average pump power and several tens of millijoules pump pulse energies. Received: 7 September 2001 / Published online: 7 November 2001  相似文献   

2.
Distributed feedback (DFB) lasing in permanent volume transmission gratings formed in a laser dye-doped organic–inorganic nanocomposite has been investigated. DFB laser cavities were fabricated using one-step two-beam holographic exposure of Pyrromethene 567 (PM567) doped photopolymerizable acrylate monomers containing inorganic (LaPO4) nanoparticles. Compared to the formulation previously utilized, the material composition presented provides longer lifetime of the laser. Spectral and polarization properties, input–output and stability characteristics of the laser output have been investigated by varying the material composition and the patterning parameters. DFB lasing emission of the second and the third diffraction orders has been demonstrated. The spectral linewidth of ∼0.08 nm has been observed at a pump energy threshold of about 0.2 μJ/pulse for the second-order DFB lasing when pumped with 532 nm 500 ps laser pulses. Spectral tuning of the lasing output over ∼56 and ∼7 nm was obtained by varying the grating period and the content of inorganic nanoparticles in the polymer matrix, respectively.  相似文献   

3.
Tracks of modified material were written with femtosecond-laser pulses in neodymium-doped YAG crystals. Due to a stress-induced change of the refractive index, waveguiding beside the tracks and between two adjacent tracks with a distance of approximately 25 μm was observed. Loss measurements resulted in guiding losses of about 1.6 dB/cm for the double track waveguide. Spectroscopic investigations of the 4 F 3/24 F 11/2 transmission lines of the neodymium ions, which are close to the modified region, revealed a small stress-induced red shift of the lines. Laser oscillation of single-track waveguides and double-track waveguides was demonstrated with Ti:Sapphire laser pumping at a wavelength of 808 nm. Best laser performance with about 1.3 W output power at 2.25 W launched pump power was achieved using a double-track waveguide with a separation of 27 μm at an outcoupling transmission of 95%.  相似文献   

4.
This paper reported a broadband tuning intracavity optical parametric oscillator (IOPO), based on the multiple grating periodical poled lithium niobate (PPLN) pumped by a acoustic-optical (AO) Q-switched Nd:YVO4 laser. The widely tunable OPO output signal wavelength range from 1390 to 1605 nm, which was obtained by changing PPLN poling period from 27.8 to 31.6 μm at a certain temperature of 46°C, while the continuous tuning range was measured from 1475 to 1592 nm with the PPLN poling period of 30 μm by varying the temperature of nonlinear crystal PPLN from 50 to 120°C. The maximum output power of 0.92 W at 1534 nm with the minimum pulse width of 5.17 ns was generated under the incident pump power of 9.6 W at 808 nm. The corresponding peak power and single pulse energy were calculated to be 5.94 kW and 30.7 μJ, respectively. The M 2-factor was measured to be 2.01 at the signal power of 0.4 W.  相似文献   

5.
The propagation of the HE11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered : hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed. These results are of interest for infrared lasers or waveguide applications and for Electron Cyclotron Wave (ECW) systems at the millimeter wavelength.  相似文献   

6.
Room temperature operation of a c-cut microchip Tm,Ho:Lu2SiO5 laser end-pumping by a fibercoupled laser-diode is reported. A 4.03 W incident pump power is used to generate a maximum laser output of 98 mW, representing 2.43% optical-to-optical conversion efficiency and a 4.38% slope efficiency corresponding to incident power. In the experiment, the oscillating wavelengths shifting from 2.084 to 2.089 μm has been observed and approximately 10 mW single 2.087 μm wavelength oscillation has been obtained by changing the pump power to 1.43 W and the position of the pump focus.  相似文献   

7.
We report on the production and fluorescence of active channel waveguides in Cr:LiSrAlF6. We have produced ∼10 μm wide and 5 μm high channel waveguides by He+ ion implantation, lithographic patterning and subsequent Ar+ ion sputtering. Diode-pumped waveguides emitted 13 μW of fluorescence light with a spectrum ranging from 760 nm to 900 nm at a pump power of 165 mW and a pump wavelength of 660 nm. The compact and cheap optical pump source is a main advantage of this fluorescence material. This makes Cr:LiSrAlF6 channel waveguides a suitable candidate for a broadband fluorescence source in low-coherence interferometry and other applications in the near-infrared wavelength range. PACS 42.70.Hj; 42.79.Gn; 42.30.Wb  相似文献   

8.
This study puts forward the concept of helical distributed feedback (DFB) lasers. The basic features of this new type of laser are derived by group theoretical considerations on cylindrical, circular linear periodic, and helical waveguide and laser structures. It is demonstrated that not only linear periodic structures but also helical structures show Bragg and DFB effects. Microwave and far-infrared experiments on passive helical metal waveguides reveal Bragg resonances in transmission. These results initiated the first experimental realization of a helical DFB gas laser, i.e. an optically pumped 496m CH3F laser with a helical metal waveguide of a pitch close to 250m. This helical DFB laser shows higher-mode selectivity than the corresponding linear DFB laser. Finally, we show that the concept of helical DFB also applies to dye lasers with internal DFB incorporated by a mixture of the dye with a cholesteric liquid crystal.On leave from the Polish Academy of Sciences, Gdansk, Poland  相似文献   

9.
A miniaturized, high repetition rate, picosecond all solid state photo-induced distributed feedback (DFB) polymer-dye laser is described by applying a passively Q-switched and frequency-doubled Cr4+:Nd3+:YAG-microchip laser (pulse width Δτ=540 ps, repetition rate ν=3 kHz, pump energy Epump=0.15 μJ) as a pump source. A poly-methylmethacrylate film doped with rhodamine B dye serves as active medium. The DFB-laser pulses are temporally and spectrally characterized, and the stability of the thin polymer/dye film at high repetition rates is analyzed. The shortest DFB-laser pulses obtained have a duration of 11 ps. After the emission of 350000 pulses the intensity of the DFB-laser output has decreased by a factor of two and the pulse duration has increased by a factor of 1.2. For single DFB-laser pulses of 20-ps duration the spectral bandwidth is measured to be Δλ=0.03 nm, which is only 0.005 nm above the calculated Fourier limit assuming a Gaussian profile for the temporal shape of the pulses. Coarse wavelength tuning of the DFB laser between 590 and 619 nm is done by turning the prism. Additionally, a fine tuning of the DFB-polymer-laser wavelength is achieved by changing the temperature of the polymer/dye layer (=-0.05 nm/°C) in the range from 20 to 40 °C. Received: 1 March 2001 / Revised version: 23 May 2001 / Published online: 18 July 2001  相似文献   

10.
Starting with two dimensional, scalar wave equation, a variational equation was established for the fundamental TE and TM modes guided in Ti:LiNbO3 waveguides on the basis of assuming a symmetric Gaussian mode field function in the width direction and two-half Gaussian trial functions in the depth direction. The controllable waveguide fabrication parameters, including channel width, diffusion temperature, initial Ti-strip thickness and diffusion time, dependent of fundamental mode size, effective pump area, coupling efficiency between pump and laser modes, and the coupling loss between a Ti:LiNbO3 waveguide and a fiber were numerically calculated for Z-cut Er:Ti:LiNbO3 channel waveguide lasers at three possible emission wavelengths 1532,1563 and 1576 nm and two possible pump wavelengths 1480 and 980 nm. The calculated results were compared with those of Gaussian/Hermite–Gaussian mode field distribution in detail.  相似文献   

11.
We investigated the 13CD3I isotopomer of methyl iodide as a source of TeraHertz laser radiation using the optical pumping technique. We used a pulsed waveguide CO2 laser as the pump laser and an open Fabry–Pérot cavity for new laser line generation. We discovered 18 new laser lines with wavelengths ranging from 308.4 to 1132.7 μm, plus two lines previously assigned to 12CD3I. All of the lines were characterized in wavelength, pump frequency offset, optimum pressure of operation, and relative polarization and intensity.  相似文献   

12.
We investigated the optical properties of the ErYb(DBM)3MA complexes and the ErYb(DBM)3MA containing polymer. Absorption and photoluminescence spectra confirm that the presence of Yb3+ ions enhances luminescence efficiency of Er3+ ions. The full width at half maximum bandwidth (FWHM) is ∼80 nm wide around 1.53 μm wavelength. We also fabricated ErYb containing polymeric channel waveguides using reactive ion etching technique. As an input pump of 120 mW was used, a ∼1.53 μm spontaneous emission was obtained in a 4-mm-long waveguide. PACS 42.00.00; 42.70.Jk; 42.82.Et  相似文献   

13.
We report on the periodic polarization of α-phase proton- exchanged LiNbO3 planar waveguides down to 5 μm period lengths using structured electrodes and electrical fields. Unlike a majority of previous work, room-temperature electric field poling has been carried out after waveguide fabrication. Chemical etching of the large guiding surface has revealed homogeneous and high-quality domains with duty cycles close to 0.5. Moreover, it was verified by diffraction techniques and etching that the domain structure is preserved more than 2 μm along the thickness of the waveguide. The excellent optical performances of single-domain α-phase waveguides were not affected by the periodic poling.  相似文献   

14.
Electro-optic waveguide modulators utilizing phase retardation of two orthogonally polarized optical modes in LiNbO3 and LiTaO3 waveguides have been designed taking into consideration the optical field distribution in the waveguides and the electrical properties of the electrodes. The analysis has revealed that a driving-voltage to frequency-bandwidth ratio of 1 V/GHz is attainable at the wavelength of 1.05 m using presently available embedded and ridge waveguides. Improvement in waveguide fabrication techniques may reduce the ratio by at least a half. Thus, LiNbO3 and LiTaO3 waveguide modulators are considered to be promising candidates for practical application to single-mode optical-fibre transmission systems of higher than 1 Gbit/s.  相似文献   

15.
In this paper we review theoretical and experimental studies on optically pumped 496 m CH3F DFB lasers of different configurations, including grazing-incidence arrangement and phase matching by a gap in the periodic structure. These configurations combine the simple tuning mechanism of grazing-incidence systems with the high frequency selectivity of DFB. Our theoretical considerations based on coupled-wave theory are concerned with the dispersion relations and resonance conditions of standard and phase-matched DFB and grazing-incidence gas lasers. We have succeeded in calculating the relevant TM coupling coefficients for lasers with rectangular periodic waveguides. For laser cavities with various continuous gratings we have measured the resonant heights and tuning angles of the laser oscillations of first- and second-order DFB. We have found good agreement with theoretical resonance conditions. In order to improve the mode selectivity and to attain single longitudinal mode operation, which is a requirement for semiconductor lasers in many applications, we have introduced variable gaps in the center of the gratings. These provide phase matching and gap modes. We have compared the measured gap modes with our theory and found agreement in specific cases, where the phase-matched cavity implies single-mode laser operation. Our results on standard and phase-matched DFB cavities promise an improvement of the performance of phase-matched semiconductor lasers with respect to small bandwidth and optimized output power.  相似文献   

16.
Experimental investigations were made of wavefront reproduction (WFR) by backward stimulated Raman scattering (SRS) and backward stimulated Brillouin scattering (SBS) in CS2 with a linearly polarized ruby pump beam. The experimental studies were carried out as a function of the optical waveguide diameter and photographic records comparing the pump beam with the backscattered SBS and SRS beams are presented. In all of the cases studied there was a high degree of replication between the SBS and pump beams; however, a deterioration in the quality of the replicated SRS beam was observed, and it increased as the cross-sectional area of the waveguide increased.  相似文献   

17.
Arbore MA  Fejer MM 《Optics letters》1997,22(3):151-153
We report quasi-phase-matched singly resonant optical parametric oscillation in electric-field-poled lithium niobate waveguides. Parametric gains as high as 250%/W, an oscillation threshold of 1.6 W (peak), idler output powers of 220 mW, and a tuning range of 1180-2080 nm for pump wavelengths of 756-772 nm have been observed. Pump depletion is limited to 40% because of the multiple launched transverse modes at the pump wavelength. We predict that fully optimized waveguide singly resonant oscillators can have thresholds of ~100 mW, accessible to cw diode pumping.  相似文献   

18.
The efficient oscillation of LiF:F2 color center laser pumped by a compact LD-pumped Nd:YVO4 acousto optically Q-switched laser with 30 kHz pulse repetition rate was demonstrated. The broadband oscillation with 75 μJ pulse energy and 37 kW peak power with the slope efficiency 20% was obtained. The average output power as high as 230 mW was reached. The narrow line tunable from 1.10 to 1.29 μm laser radiation with 10% conversion efficiency in the maximum of the tuning curve was achieved under pumping with 1.6 W average pump power.  相似文献   

19.
We report optical planar waveguide formation and modal characterization in β-BaB2O4 crystals by Cu2+-ion implantation at an energy of 3.0 MeV and doses of ∼ 1014 ions/cm2. The prism-coupling method was used to investigate the dark-mode property at wavelengths of 633 nm and 1539 nm. The refractive-index profile of the waveguide was reconstructed by an effective refractive index method. The modal analysis indicates that the fields of TM modes can be well restricted in the guiding region, which means the formation of a non-leaky waveguide in the crystal. The results show that the β-BaB2O4 waveguides may be used in the application of high efficiency frequency conversion. PACS 61.80.Jh; 42.70.Mp; 42.65.Wi  相似文献   

20.
We report power scaling of the Yb3+:LaSc3(BO3)4 (Yb:LSB) laser material in thin disk configuration. Employing a 300-μm thick Yb(25 at. %):LSB crystal, the continuous-wave output power around 1.0 μm wavelength reaches 40 W for 95 W of pump power at 974 nm; the overall optical-to-optical efficiency and the slope efficiency are 0.43 and 0.48, respectively. Preliminary experiments show continuous tuning of the laser output between 991 nm and 1085 nm. PACS 42.55.Xi; 42.60.Fc; 42.55.Rz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号