首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Li WX  Guo L  Chen LJ  Shi XY 《Journal of fluorescence》2008,18(6):1043-1049
A ligand with two carbonyl groups and one sulfinyl group has been synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, 1H NMR and UV spectra. The results indicated that the composition of these complexes is REL5(ClO4)3·3H2O (RE = La(III), Pr(III), Eu(III), Tb(III), Yb(III), L = C6H5COCH2SOCH2COC6H5). The fluorescent spectra illustrate that both the Tb (III) and Eu (III) complexes display characteristic metal-centered fluorescence in solid state, indicating the ligand favors energy transfer to the excitation state energy level of them. However, the Tb (III) complex displays more effective luminescence than the Eu (III) complex, which is attributed to especial effectively in transferring energy from the average triplet energy level of the ligands (T) onto the excited state (5D4) of Tb (III) than that (5D0) of Eu (III), showing a good antenna effect for Tb(III) luminescence. The phosphorescence spectra and the relationship between fluorescence lifetimes and fluorescence intensities were also discussed.  相似文献   

2.
Two novel ternary rare earth complexes of Tb(III) and Dy(III) perchlorates with bis(benzoylmethyl) sulfoxide (L) and benzoic acid (L′) had been synthesized and characterized by elemental analysis, coordination titration analysis, molar conductivity, IR, TG-DSC, 1HNMR and UV spectra. The results indicated that the composition of these complexes was REL5L′(ClO4)2·nH2O (RE= Tb(III), Dy(III); L=C6H5COCH2SOCH2COC6H5, L′=C6H5COO; n = 6,8). The fluorescence spectra illustrated that the ternary rare earth complexes presented stronger fluorescence intensities, longer lifetimes and higher fluorescence quantum efficiencies than the binary rare earth complexes REL5·(ClO4)3·2H2O. After the introduction of the second ligand benzoic acid group, the relative fluorescence emission intensities and fluorescence lifetimes of the ternary complexes REL5L′(ClO4)2·nH2O (RE= Tb(III), Dy(III)) enhanced more obviously than the binary complexes. This indicated that the presence of both organic ligands bis(benzoylmethyl) sulfoxide and the second ligand benzoic acid could sensitize fluorescence intensities of rare earth ions, and the introduction of benzoic acid group was resulted in the enhancement of the fluorescence properties of the ternary rare earth complexes. The phosphorescence spectra were also discussed.  相似文献   

3.
A ligand with double sulfinyl groups, naphthyl-naphthalinesulphonylpropyl sulfoxide(dinaphthyl disulfoxide, L), was synthesized by a new method and its several lanthanide (III) complexes were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DTA, 1HNMR and UV spectra. The composition of these complexes, were RE2(ClO4)6·(L)5·nH2O (RE = La, Nd, Eu, Tb, Yb, n = 2 ∼ 6, L = C10H7SOC3H6SOC10H7). The fluorescent spectra illustrated that the Eu (III) complex had an excellent luminescence. It was supposed that the ligand was benefited for transferring the energy from ligand to the excitation state energy level (5D0) of Eu (III). The Tb (III) complex displayed weak luminescence, which attributed to low energy transferring efficiency between the average triplet state energy level of ligand and the excited state (5D4) of Tb (III). So the Eu (III) complex displayed a good antenna effect for luminescence. The phosphorescence spectra and the relationship between fluorescence lifetime and fluorescence intensity were also discussed.  相似文献   

4.
Two novel ternary rare earth perchlorate complexes had been synthesized by using bis(benzoylmethyl) sulfoxide as first ligand (L=C6H5COCH2SOCH2COC6H5), salicylic acid as second ligand (L=C6H4OHCOO). The compounds were characterized by elemental analysis, TG-DSC and molar conductivities in DMF solution. The composition was suggested as [REL5L′](ClO4)2·nH2O (RE=Tb, Dy; n=6, 8 ). Based on IR, 1HNMR and UV spectra, it showed that the first ligand, bis(benzoylmethyl) sulfoxide (L), bonded with Tb(III), Dy(III) ions by the oxygen atom of sulfinyl group. The second ligand, salicylic acid group (L′), not only bonded with RE(III) ions by one oxygen atom of carboxyl group but also bonded with RE(III) ions by oxygen atom of phenolic hydroxyl group. In bis(benzoylmethyl) sulfoxide system, fluorescent spectra of the complexes showed that the luminescence of Tb(III), Dy(III) ions was enhanced by the second ligand salicylic acid. The ternary complexes had stronger fluorescence than the binary ones where only bis(benzoylmethyl) sulfoxide acted as ligand. Phosphorescent spectra of the two ligands indicated that the coordination of salicylic acid resulted in the matching extent increasing between the triplet state of ligand and excited state of the rare earths. The relationship between fluorescence lifetime and fluorescence intensity was also discussed.  相似文献   

5.
Rare-earth complexes [(TbxTmy)L5(ClO4)2](ClO4)·3H2O(x:y=1.000:0.000, 0.999:0.001, 0.995:0.005, 0.990:0.010, 0.950:0.050, 0.900:0.100, 0.800:0.200, 0.700:0.300; L=C6H5COCH2SOCH2COC6H5) were synthesized and characterized with elemental analysis, infrared spectra (IR) and 1H NMR. The photophysical properties of these complexes were studied in detail with ultraviolet absorption spectra, fluorescent spectra and lifetimes. The fluorescence spectra and decay curves of complexes indicated that the fluorescence emission intensity was enhanced and the fluorescence lifetime was prolonged by Tm (III), which may be due to the intra-molecular energy transfer between inert rare-earth ions and active rare-earth ions. The complexes showed the best properties when the mole ratio of Tb (III) to Tm (III) is 0.995:0.005. The intensity of fluorescence can be increased to 208%. Additionally, the energy-transfer mechanisms between the ligand and the central Tb (III) ions were discussed.  相似文献   

6.
Two novel ternary rare earth complexes LnL5L′(ClO4)32H2O (Ln=Eu(III), Tb(III); L=bis(benzoylmethyl) sulfoxide, L′=phen) were synthesized and characterized by elemental analysis, coordination titration analysis, molar conductivity, IR, TG-DSC,1H NMR and UV spectra. The fluorescence spectra illustrated that both the Eu(III) and Tb(III) ternary complexes displayed strong characteristic metal-centered fluorescence in solid state. After the introduction of the second ligand phen group, the relative emission intensities and fluorescence lifetimes of the ternary complex EuL5L′(ClO4)32H2O (L=C6H5COCH2SOCH2COC6H5, L′=phen) enhanced more obviously than that of the binary complex EuL5(ClO4)33H2O. This indicated that the presence of both organic ligands bis(benzoylmethyl) sulfoxide and the second ligand phen could sensitize fluorescence intensities of Eu(III) ions, and the introduction of phen group was resulted in the enhancement of the fluorescence properties of the Eu(III) ternary rare earth complexes. The phosphorescence spectra are also discussed.  相似文献   

7.
Luminescence properties of lanthanide(III) ions (Ln = Nd, Sm, Eu, Gd, Tb, Dy and Tm) were investigated by measuring the excitation and emission spectra, and emission lifetimes in H2O and D2O solutions of 3 moll?1 K2CO3, where anionic tetra-carbonate complexes, [Ln(CO3)4]5- were the predominant species.

Electronic transitions of the carbonato complex corresponding to both the excitation and emission spectra were assigned from the energy level diagrams of Ln(III) and compared with those of the aqua ion. Enhancement of emission intensity of the complex was observed at particular excitation transitions of Eu(III), Gd(III) and Tb(III), and at particular emission transitions of Sm(III), Eu(III), Dy(III) and Tm(III). The enhancement at the emission transition was estimated quantitatively as a branching ratio from the lowest emitting state of Ln(III), and discussed in terms of hypersensitivity.

Emission lifetimes of the carbonato complexes were all longer than those of aqua ions in H2O solution, while the lifetimes of the complexes for Eu(III) and Tb(III) shorter than those in D2O solution. The difference in non-radiative decay constants for the excited complex in H2O and D2O solutions was found to be proportional to an exponential of the energy gap of Ln(III). The lifetime ratio between the H2O and D2O solutions showed the order of Sm > Dy > Eu > Tb, corresponding to the opposite order of the energy gap. These were discussed in terms of an energy gap law, i.e. a relationship between the energy gap of Ln(III) and vibration energies of the ligand or water molecules.  相似文献   

8.
Two novel ternary rare-earth complexes SmL5·L·(ClO4)2·7H2O and EuL5·L·(ClO4)2·6H2O (the first ligand L = C6H5COCH2SOCH2COC6H5, the second ligand L = C6H4OHCOO) were synthesized and characterized by element analysis, molar conductivity, coordination titration analysis, IR, TG-DSC, 1HNMR and UV spectra. The detailed luminescence studies on the rare-earth complexes showed that the ternary rare-earth complexes presented stronger fluorescence intensities, longer lifetimes, and higher fluorescence quantum efficiencies than the binary rare-earth materials. After the introduction of the second ligand salicylic acid group, the relative emission intensities and fluorescence lifetimes of the ternary complexes LnL5·L·(ClO4)2·nH2O (Ln = Sm, Eu; n = 7, 6) enhanced more obviously than the binary complexes LnL5·(ClO4)3·2H2O. This indicated that the presence of both organic ligand bis(benzoylmethyl) sulfoxide and the second ligand salicylic acid could sensitize fluorescence intensities of rare-earth ions, and the introduction of salicylic acid group was a benefit for the fluorescence properties of the ternary rare-earth complexes. The fluorescence spectra, fluorescence lifetime and phosphorescence spectra were also discussed.  相似文献   

9.
1-(4-Aminoantipyrine)-3-tosylurea (H2L) and its three lanthanide (III) complexes, M(H2L)3 3NO3 [where M = Nd(III), Sm(III) and Eu(III)], have been synthesized and characterized. In addition, the DNA-binding properties of the three complexes have been investigated by UV–vis (ultraviolet and visible) absorption spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, cyclic voltammetry, and viscosity measurements. Results suggest that the three complexes bind to DNA via a groove binding mode. Furthermore, the antioxidant activity (superoxide and hydroxyl radical) of the metal complexes was determined by using spectrophotometer methods in vitro. These complexes were found to possess potent antioxidant activity and be better than standard antioxidants like vitamin C and mannitol. Absorption spectra of the complex 3 inTris-HCl buffer upon addition of calf-thymus DNA. [complex]=1×10-5 M, [DNA]=(0-1) ×10-5 M. Arrow shows the absorbance changing upon increasing DNA concentrations. Inset: plots of [DNA]/(εa – εf) versus [DNA] for the titration of DNA with the complex.  相似文献   

10.
A novel Aryl amide ligand H2L and its eight complexes, [LnH2L(NO3)2·H2O]NO3 [Ln=Sm(III), Er(III), Tb(III), Dy(III), La(III), Gd(III), Nd(III), and Pr(III)], are presented. The ligand and complexes were synthesized and characterized based on elemental analyses, molar conductance, IR, 1H and 13C-NMR, UV–VIS., and TGA studies. The conductivity data show a 1:1 electrolytic nature with a general formula [LnH2L(NO3)2·2H2O]NO3 The IR spectra reveal coordination of the ligand through the azomethine nitrogen and the phenolic hydroxyl of the ligand to the lanthanide ion. The coordinated nitrate ions behave in a bidentate fashion. The thermal decomposition studies indicate the presence of two water molecules in the inner coordination sphere. Under the excitation at 319 nm, the luminescence emission properties for Sm, Tb, and Dy complexes are observed. These observations show that the ligand favors energy transfers to the emitting energy level of these lanthanide ions. Furthermore, the antioxidant activity of the ligand and its Ln(III) complexes was determined by DPPH radical scavenging method, which indicates that the Ln(III) complexes exhibit more effective antioxidant activity than the ligand alone.  相似文献   

11.
6-Hydroxy chromone-3-carbaldehyde-(4′-hydroxy) benzoyl hydrazone (L) and its Ln (III) complexes, [Ln = La, Nd, Eu and Tb] have been prepared and characterized on the basis of elemental analyses, molar conductivities, mass spectra, 1H NMR, thermogravimety/differential thermal analysis (TG-DTA), UV-vis spectra, fluorescence spectra and IR spectra. The formula of the complex is [Ln L·(NO3)2]·NO3. Spectrometric titration, ethidium bromide displacement experiments and viscosity measurements indicate that Eu (III) complex bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constant of Eu (III) with DNA was 2.48 × 105 M−1 through fluorescence titration data.  相似文献   

12.
The reactions of lanthanide nitrates with a Schiff-base ligand HL (2-[(2-hydroxypropylimino)methyl] phenol) have produced five new complexes with formula as [Ln2(L)3(NO3)3]CH3OH(Ln=Gd 1, Tb 2, Dy 3, Ho 4, Er 5). These new complexes are characterized by elemental analysis, IR and X-ray diffraction, as well as fluorescence spectra. Single-crystal X-ray diffraction analysis reveals that all the complexes crystallize in the trigonal system, space group R-3. Fluorescence spectroscopy of Tb(III) and Dy(III) complexes display strong characteristic metal-centered fluorescence in solid state, which demonstrates that luminescence is sensitized by the effective energy-transfer from ligand to the metals. The fluorescence lifetimes of complex 2 and 3 are also determined.  相似文献   

13.
Complexation and photophysical properties of complexes of lanthanide ions, Ln(III), with diethyl(phthalimidomethyl)phosphonate ligand, DPIP, were studied. Interactions between Ln(III) and DPIP were investigated using Nd(III) absorption and Eu(III) and Tb(III) luminescence (emission and excitation) spectra, recorded in acetonitrile solution containing different counter ions (NO3-, Cl- and ClO4-). Results of the absorption spectroscopy have shown that counter ions play a significant role in the complexation of Ln(III)/DPIP complexes. Studies of luminescence spectra of Eu(III) and Tb(III) ions proved that the formation of Ln(III)/DPIP complexes of stoichiometry Ln:L=1:3 is preferred in solution. Based on the results of elemental analysis, Nd(III) absorption spectra and IR and NMR data, it was shown that the DPIP ligand binds Ln(III) ions via oxygen from phosphoryl group, forming complexes of a general formula Ln(DPIP)3(NO3)3·H2O, in which the NO3- ions are coordinated with the metal ion as bidentate ligands. Luminescent properties and energy transfer, from the ligand to Ln(III) ions in the complexes formed, were studied based on the emission and excitation spectra of Eu(III) and Tb(III). Their luminescent lifetimes and emission quantum yields were also measured.  相似文献   

14.
Eu(III)-9-acridinecarboxylate (9-ACA) complex was synthesized and characterized by elemental analysis, conductivity measurement, IR spectroscopy, thermal analysis, mass spectroscopy, 1H-NMR, fluorescence and ultraviolet spectra. The results indicated that the composition of this complex is [Eu(III)-(9-ACA)2(NCS)(C2H5OH)2] 2.5 H2O and the oxygen of the carbonyl group coordinated to Eu(III). The interaction between the complex with nucleotides guanosine 5′- monophosphate (5′-GMP), adenosine 5′-diphosphates (5′-ADP), inosine (5′-IMP) and CT-DNA was studied by fluorescence spectroscopy. The fluorescence intensity of Eu(III)-9-acridinecarboxylate complex was enhanced with the addition of CT-DNA. The effect of pH values on the fluorescence intensity of Eu(III) complex was investigated. Under experimental conditions, the linear range was 9–50 ng mL−1 for calf thymus DNA (CT- DNA) and the corresponding detection limit was 5 ng mL−1. The results showed that Eu(III)-(9-ACA)2 complex binds to CT-DNA with stability constant of 2.41 × 104 M .  相似文献   

15.
We have measured the relative luminescence quantum yields and luminescence lifetimes of Tb(III) and Dy(III) ions in complexes with pyrazole-5-carboxylic acids. Based on study of the time-resolved luminescence spectra of Tb(III) and Dy(III) complexes with 3-(6-benzodioxanyl)pyrazole-5-carboxylic acid, we have demonstrated the possibility in principle of determining Dy(III) in the presence of Tb(III) by separating the short-lived component of the luminescence of dysprosium, despite the practically complete overlap of the analytical bands of dysprosium by the terbium bands. This method was used to determine Dy(III) in luminescent materials: scandium borates doped with terbium and dysprosium. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 3, pp. 327–331, May–June, 2007.  相似文献   

16.
Six novel complexes of lanthanide nitrates (Ln = La, Sm, Eu, Gd, Tb, Dy) with a amide type ligand, N-methyl-N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and 1H NMR spectra. The fluorescence properties of the complexes and the triplet state energy of the ligand were studied in detail. The result indicates that, the triplet state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III). In addition, the fluorescence intensities of the Eu(III) complex in different solutions(tetrahydrofuran, acetone and acetonitrile) are stronger than that in solid state. This is probably due to the solvate effect and the stoichiometry change of ligand with Eu(III) ion in solutions.  相似文献   

17.
The lanthanide (III) 4-alkoxybenzoates [Ln(CnH2n?+?1OC6H4CO2)3, Ln?=?La (III), Pr (III), Nd (III), Eu (III), Gd (III), Tb (III) and Dy (III) and n?=?6, 8, 10, 12 and 16] have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, and IR and electronic spectroscopy. Hot-stage polarizing optical microscopy and differential scanning calorimetry have been used to investigate the mesomorphic behaviour. The chain length influences the structure and hence the thermal behaviour of these compounds. All the lanthanide complexes except decyloxy derivatives exhibit smectic A mesophase. The decyloxy-containing complexes are non-mesomorphic. The differential scanning calorimeter traces do not display the exothermic peak for all the compounds except for the hexadecyloxy derivatives, which exhibit enantiotropic smectic A phase. The influence of the lanthanide ions on the phase transition has also been clearly demonstrated.  相似文献   

18.
The complex of Tb(TPTZ)Cl3·3H2O was synthesized by adding the ethyl alcohol solution of TbCl3 (1 mmol) to the solution of 2,4,6-tris-(2-pyridyl)-s-triazine(TPTZ,1 mmol) with constant stirring. The solution which had been filtered was kept at the room temperature for 4 weeks, and then a kind of transparent crystal was formed. Besides, nine kinds of solid complexes in the different molar proportion of terbium to gadolinium had been synthesized by adopting the similar method mentioned above. It was inferred from the elemental analysis and rare earth complexometry that the composition of these complexes is (TbxGdy)(TPTZ)Cl3·3H2O (x : y = 0.9 : 0.1, 0.8 : 0.2, 0.7 : 0.3, 0.6 : 0.4, 0.5 : 0.5, 0.4 : 0.6, 0.3 : 0.7, 0.2 : 0.8, 0.1 : 0.9). The absorption spectra and photoluminescence of the complexes were determined in dimethylsulfoxide (DMF), which showed that the excitation of the complexes is mostly ligand based. The triplet state energy level of TPTZ was measured, indicating that the lowest excitation state energy level of Tb(III) and the triplet state energy level of TPTZ match well each other. The fluorescent data indicated that the fluorescent emission intensity of Tb3+ ions would be enhanced in the complexes after terbium was doped with Gd3+ ion. When x : y was 0.5 : 0.5, the fluorescent emission intensity was the largest. The result obtained by testing the X-ray diffraction of the monocrystal revealed that the molecular formula of the mono-crystal complex is [Tb(TPTZ)(H2O)6]Cl3·3H2O. The number of metal ion coordinates is nine, and the tridentate TPTZ and six water molecules are bonded with terbium respectively. Besides, it also revealed that the monocrystal belongs to the monoclinic system, and space group Cc with the following unit cell parameters is a = 1.4785 (3) nm, b = 1.0547 (2) nm, c = 1.7385 (4) nm, β = 94.42 (3)°, V = 2.7028 (9) nm3 and Z = 4.  相似文献   

19.
To explore the relationship between the structure of the ligands and the luminescent properties of the lanthanide complexes, a series of lanthanide nitrate complexes with two novel structurally related multipodal ligands, 1,3-bis{[(2’-(2-picolylaminoformyl))phenoxyl]methyl}benzene (L I ) and 1,2-bis{[(2’-(2-picolylaminoformyl))phenoxyl]methyl}benzene (L II ), have been synthesized and characterized by elemental analysis, infrared spectra and molar conductivity measurements. At the same time, the luminescent properties of the Eu(III) and Tb(III) nitrate complexes in solid state and the Tb(III) nitrate complexes in solvents were investigated at room temperature. Under the excitation of UV light, these complexes exhibited characteristic emissions of central metal ions. The lowest triplet state energy levels T1 of these ligands both match better to the lowest resonance energy level of Tb(III) than to Eu(III) ion. The influence of the structure of the ligands on the luminescent intensity of the complexes was also discussed.  相似文献   

20.
This work reports an alternative aproach to obtain the Judd-Ofelt intensity parameters of Sm(III) complexes with the general formula: [Sm(tta)3(L)n], with L = H2O, triphenylphosphine oxide (tppo), 2,2′-bipyridine (bipy) and 1,10-phenantroline (phen); n = 2 for H2O and tppo and n = 1 for phen and bipy, using the absorption spectra of rare earth complexes where the powders are dispersed in KBr pellets. This approach can be applied to other complexes of rare earth ions that have spin allowed transitions and it is validated by comparing the emission spectra of the complexes with those dispersed in KBr pellets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号