A kinetic study of the hydrolysis of sucrose by solid catalysts has been carried out using a polarimetric technique. V2O5/-Al2O3 was selected as appropriate catalyst. At the optimum conditions the activation parameters have been evaluated using the Arrhenius and Eyring plots. 相似文献
Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltrimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnation-evaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride. 相似文献
Controlled synthesis based on spectroscopic characterization, structure, and catalytic performance of mesoporous silica SBA‐15‐supported vanadium oxide model catalysts (see TEM image) are reviewed. The effect of water on the structure and dispersion of highly dispersed vanadium oxide is discussed in the light of recent results in multiple in situ spectroscopy.
Herein, we describe the use of Pd nanoparticles immobilized on an amino‐functionalized siliceous mesocellular foam for the catalytic oxidation of H2O. The Pd nanocatalyst proved to be capable of mediating the four‐electron oxidation of H2O to O2, both chemically and photochemically. The Pd nanocatalyst is easy to prepare and shows high chemical stability, low leaching, and recyclability. Together with its promising catalytic activity, these features make the Pd nanocatalyst of potential interest for future sustainable solar‐fuel production. 相似文献
In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica‐based mesoporous (i.e., MCM‐41, MCM‐48, and SBA‐15) and microporous (ZSM‐5 and MWW) versus macroporous materials (D11‐10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such “linker‐free” supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis‐cyclooctene to form 1,9‐cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex. 相似文献
High-surface area mesoporous 20 mol% CuO/ZrO2 catalyst was prepared by a surfactant-assisted method of nanocrystalline particle assembly, and characterized by x-ray powder diffraction (XRD), N2 adsorption, transmission electron microscopy (TEM), H2-TPR, TG-DTA, and x-ray photoelectron spectra (XPS) techniques. The catalytic properties of the CuO/ZrO2 nanocatalysts calcined at different temperature were evaluated by low-temperature carbon monoxide oxidation using a CATLAB system. The results showed that these mesoporous nanostructured CuO/ZrO2 catalysts were very active for low-temperature CO oxidation and the CuO/ZrO2 catalyst calcined at 400°C exhibited the highest catalytic activity. 相似文献
Pharmaceutical antibiotics are not easily removed from water by conventional water‐treatment technologies and have been recognized as new emerging pollutants. Herein, we report the synthesis of clickable azido periodic mesoporous organosilicas (PMOs) and their use as adsorbents for the adsorption of antibiotics. Ethane‐bridged PMOs, functionalized with azido groups at different densities, were synthesized by the co‐condensation of 1,2‐bis(trimethoxysilyl)ethane (BTME) and 3‐azidopropyltrimethoxysilane (AzPTMS), in the presence of nonionic‐surfactant triblock‐copolymer P123, in an acidic medium. Four different alkynes were conjugated to azide‐terminated PMOs by means of an efficient click reaction. The clicked PMOs showed improved adsorption capacity (241 μg g?1) for antibiotics (ciprofloxacin hydrochloride) compared with azido‐functionalized PMOs because of the enhanced π–π stacking interactions. These results indicate that click reactions can introduce multifunctional groups onto PMOs, thus demonstrating the great potential of PMOs for environmental applications. 相似文献
Aluminated mesoporous silica (Al-SBA-15) with different amounts of Al contents were synthesized and used for the synthesis
of 3,4-dihydropyrimidine-2(1H)-ones in the liquid phase, as well as under microwave conditions. The catalytic activity results
showed very high conversion and yields of the products over many substituted aromatic aldehydes. 相似文献
The influence of pore surface functionalities in mesoporous SBA-15 silica on the stability of a model olefin metathesis catalyst, namely Grubbs I, is substantiated. In particular, it is demonstrated that the nature of the interaction between the ruthenium complex and the surface is strongly depending on the presence of surface silanols. For this study, differently functionalized mesoporous SBA-15 silica materials were synthesized according to standard procedures and, subsequently, the Grubbs I catalyst was incorporated into these different host materials. All of the materials were thoroughly characterized by elemental analyses, nitrogen physisorption at -196 °C, thermogravimetric analyses, solid-state NMR spectroscopy, and infrared spectroscopy (ATR-IR). By such in-depth characterization of the materials, it became possible to achieve models for the surface/catalyst interactions as a function of surface functionalities in SBA-15; for example, in the case of purely siliceous silanol-rich SBA-15, octenyl-silane modified SBA-15, and silylated equivalents. It was evidenced that large portions of the chemisorbed species that are detected spectroscopically arise from interactions between the tricyclohexylphosphine and the surface silanols. A catalytic study using diethyldiallylmalonate in presence of the various functionalized silicas shows that the presence of surface silanols significantly decreases the longevity of the ring-closing metathesis catalyst, whereas the passivation of the surface by trimethylsilyl groups slows down the catalysis rate, but does not affect significantly the lifetime of the catalyst. This contribution thus provides new insights into the functionalization of SBA-15 materials and the role of surface interactions for the grafting of organometallic complexes. 相似文献
Mesoporous titania was obtained by gelation from Ti-alkoxide in alcoholic solutions with addition of polymer and/or surfactant. The structure and surface morphology of the gels were characterized by N2-adsorption measurements, scanning electron microscopy and X-ray diffraction. The specific surface area and pore volume of the gels can be increased with addition of hydrophilic polymer such as polyethyleneglycol. Surfactants like cetyltrimetylammoniumchloride are effective to control the pore size and to increase the pore volume and surface area. The surface morphology of the gels can be modified by the mixing method with polymer and/or surfactant. The effects of the templating on pore size distribution, pore shape, surface area and crystallization behaviors have been discussed. 相似文献
In this paper, the effect of catalytic support and sulfiding method on the chemical state of supported Co-Mo catalysts is studied by XPS. After sulfidation with in-situ method, the majority of molybdenum in CNT supported CoMo catalyst is transferred to a species with a formal chemical state Mo(Ⅳ) in MoS2 phase, and the rest to Mo(Ⅴ) which consists of Mo coordinated both to O and S, such as MoO2S2^2- and MoO3S^2-. In case of CoMo/γ-Al2O3 catalyst sulfided with in-situ method, a fraction of molybdenum is transferred to formal state Mo(Ⅳ) in the form of MoS2, but there is still a mount of unreduced Mo(VI) phase which is difficult to be sulfided. In CoMo/CNT catalyric system sulfided with ex-situ method, Mo(IV) in the form of MoS2 is detected along with a portion of unreduced Mo(VI) phase, suggesting that not all the Mo phases are reduced and sulfided by ex-situ method. As for CoMo/γ-Al2O3, a portion of molybdenum is sulfided to intermediate reduced state Mo(V) which consists of Mo coordinated both to O and S, such as MoO2S2^2- and MoO3S^2-, in addition, there is still a fraction of unreduced Mo(Ⅵ)phase. XPS analyses results suggest that CNT support facilitates the reduction and sulfidation of active species to a large extent, and that alumina support strongly interacts with active species, hereby producing a fraction of phase which resists complete sulfiding. Catalytic measurements of catalysts in the HDS of dibenzothiophene (DBT) show that CoMo/CNT catalysts are of higher HDS activity and selectivity than CoMo/γ-Al2O3 catalyst, which is in good relation with the sulfiding behavior of the corresponding catalyst. 相似文献
MALDI-TOF mass spectrometry was used for the characterization of metallo-supramolecular coordination arrays with molecular weights between 500 and 4000 g/mol. The stepwise loss of the counterions was used as an additional fingerprint for the investigated species. The isotope pattern yielded further information, especially in combination with simulations. 相似文献