首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
亲水作用毛细管电色谱是当前微分离技术的研究热点之一,其固定相的研究受到了广泛的关注。本文介绍了亲水作用毛细管电色谱开管柱、填充柱和整体柱的研究进展,重点对近年来发展的亲水作用电色谱整体柱的制备技术进行了系统阐述。引用文献68篇。  相似文献   

2.
A novel and convenient protocol for the preparation of an open-tubular column coated with chitosan-silica hybrid using chitosan and silane-coupling agent (γ-glycidoxy-propyltrimethoxysilane) was developed for CEC, in which, chitosan was covalently bonded to the inner wall of a fused-silica capillary using γ-glycidoxy-propyltrimethoxysilane as a cross-linking agent. The stationary phase was hydrophilic due to the chitosan-silica hybrid with abundant amine and hydroxyl functional groups. The chromatographic characteristics of the column were evaluated by the separation of some organic acids and inorganic anions. The column showed good selectivity for nucleotides, aromatic acids, and inorganic anions. The mechanism for the separation of these compounds was primarily based on the hydrophilic and electrostatic interactions combined with the electrophoretic mechanism. The CEC method on the column for the separation of these compounds was compared with CE method in a bare capillary.  相似文献   

3.
Fu H  Jin W  Xiao H  Xie C  Guo B  Zou H 《Electrophoresis》2004,25(4-5):600-606
Hydrophilic interaction capillary electrochromatography (HI-CEC) for the determination of basic pharmaceuticals spiked in human serum is described. The organic modifier content, ionic strength, and pH value of the mobile phase as well as the applied voltage are optimized for separation and elution of these drug analytes. Excellent separation was achieved for drugs using a mobile phase composition of 80% v/v acetonitrile in 100 mM triethylamine phosphate (TEAP) buffer at pH 2.8 with column efficiencies for analytes more than 200,000 plates/m. The samples of human serum spiked with basic drugs were directly injected after a simple acetonitrile treatment. The linear range and reproducibility of these basic drugs using an external and internal standard method were compared. As a result, the reproducibility could be greatly improved by using the internal standard method. Good calibration curves with regression coefficients more than 0.998 in the range of 5-160 microg/mL were observed with the internal standard method. The limits of quantitation, based on standards with acceptable relative standard deviations (RSDs), were below 5 microg/mL. The intra- and inter-day precisions, determined as RSDs, were less than 4.57%.  相似文献   

4.
黄桂华  陈思谨  林旭聪  谢增鸿 《色谱》2010,28(12):1173-1178
以2-羟基乙基甲基丙烯酸酯(HEMA)为单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,制备了亲水分离模式的聚HEMA-co-EDMA新型毛细管电色谱(CEC)整体柱。考察了整体柱的结构特征及其CEC性能,研究了极性物质的保留行为,并对其可能的保留机理进行了探讨。所制备的整体柱稳定性好,固定相表面带有极性羟基功能团,不仅能提供亲水相互作用位点,且能吸附流动相中的阴离子产生阳极电渗流(EOF)。在流动相中乙腈含量较高(>62%,体积分数)的条件下,整体柱表现出典型的亲水作用,实现了对核苷、碱基和苯胺类带有碱性的强极性化合物的高效分离,并成功分离了苯酚类、苯甲酸类等中性或酸性的极性化合物。  相似文献   

5.
This work presents the separation of model proteins by capillary electrochromatography involving a monolithic stationary phase with C4 functionality. The monolith was fabricated in UV-transparent capillaries by employing a slight modification of a recently published photopolymerization procedure. With the number of theoretical plates per column ranging between 11000 and 33000, the separation efficiency proved to be lower than capillary zone electrophoresis where plate numbers ranged between 18000 and 66000. However, higher resolution was obtained due to the additional chromatographic separation mechanism. Inter- and intra-column reproducibility were evaluated, the latter could be significantly improved when using a rinsing procedure that contained 0.05% sodium dodecylsulfate in the mobile phase. Plate heights became nearly independent of mobile phase velocities higher than 0.5 mm/s indicating that high velocities can be applied without sacrificing efficiency. Furthermore, peak heights showed a dependence on injection times. For proteins, an increase in capacity factors was found when increasing the percentage of organic solvent in the mobile phase.  相似文献   

6.
Packed column capillary electrochromatography (CEC), open-tubular CEC and microcolum liquid chromatography (LC) using a cholesteryl silica bonded phase have been studied to compare the retention behavior for benzodiazepines. It has been found that packed column CEC gives better resolution, faster analysis time than microcolumn LC for benzodiazepines maintaining similar selectivity except for some solutes which are charged species under the separation conditions. However, open-tubular CEC gave different selectivities to a larger extent for charged benzodiazepines from that which should be produced by the chromatographic properties of the cholesteryl silica phase. Charged species migration times are mainly influenced by electrophoretic mobility rather than the chromatographic interactions.  相似文献   

7.
Wistuba D  Schurig V 《Electrophoresis》2000,21(18):4136-4158
Enantiomer separation by electrochromatography (CEC) can be performed in three modes: (i) open-tubular capillary electrochromatography (o-CEC), in which the chiral selector is physically adsorbed coated, and thermally immobilized or covalently attached to the internal capillary wall; (ii) packed capillary electrochromatography (p-CEC), in which the capillary is either filled with chiral modified silica particles or with an achiral packing material, and a chiral selector is added to the mobile phase; and (iii) monolithic (rod)-capillary electrochromatography (rod-CEC) in which the chiral stationary phase (CSP) consists of a single piece of porous solid. We present an overview on methods and new trends in the field of electrochromatographic enantiomer separation such as CEC with either nonaqueous mobile phases or stationary phases with incorporated permanent charges, or with packing beds consisting of nonporous silica particles or particles with very small internal diameters.  相似文献   

8.
Kang J  Wistuba D  Schurig V 《Electrophoresis》2002,23(22-23):4005-4021
Recent progress in enantiomeric separations by capillary electrochromatography (CEC) is reviewed. The development of simple and robust CEC column technologies plays an important role for popularization of CEC. During the last several years, various approaches for the preparation of enantioselective columns have been reported. Currently, the monolithic column technology (continuous beds) represents the most advanced approach for the preparation of CEC columns. The development of new chiral stationary phase used for CEC is another important issue in this field. Fundamental investigations on electrochromatographic behaviors of various CSPs are necessary in order to understand the separation mechanism and thus improve the separation performance. Some chiral stationary phases performed better under nonaqueous CEC conditions than reversed-phase conditions. Coupling CEC with mass spectrometry (MS) provides a powerful tool for enantiomeric separation. Finally, some applications of enantiomeric separation by CEC are summarized.  相似文献   

9.
Gübitz G  Schmid MG 《Electrophoresis》2004,25(23-24):3981-3996
This review summarizes recent developments in chiral separation in capillary zone electrophoresis (CZE), electrokinetic chromatography (EKC), and capillary electrochromatography (CEC) covering literature published since the year 2000. New chiral selectors and innovative approaches for CE and CEC are introduced. Recent progress in column technology for CEC is highlighted and the development of new chiral stationary phases is discussed. This review is not dedicated to list applications but will focus on new developments.  相似文献   

10.
Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography (CEC) is achieved with open-tubular capillaries (o-CEC), with packed capillaries (p-CEC) or with monolithic capillaries. In o-CEC, capillaries are coated with a thin film containing cyclodextrin derivatives, cellulose, proteins, poly-terguride or molecularly imprinted polymers as chiral selectors. In p-CEC, typical chiral HPLC stationary phases such as silica-bonded cyclodextrin or cellulose derivatives, proteins, glycoproteins, macrocyclic antibiotics, quinine-derived and 'Pirkle' selectors, polyacrylamides and molecularly imprinted polymers are used as chiral selectors. Chiral monolithic stationary phases prepared by in situ polymerization into the capillary were also developed for electrochromatographic enantiomer separation.  相似文献   

11.
Huang G  Lian Q  Zeng W  Xie Z 《Electrophoresis》2008,29(18):3896-3904
A silica-based monolith as polar stationary phase was described for hydrophilic interaction pressurized capillary electrochromatography (HI-pCEC). The polar monolithic column was prepared by on-column reaction of lysine with epoxy groups on a gamma-glycidoxypropyltrimethosysilane-modified silica monolith. The stationary phase yielded strong hydrophilic interaction due to the slightly polar hydroxyl groups, and the strong polar lysine ligand with amino groups and carboxylic groups contained on the surface of the monolith. In order to evaluate the hydrophilic character of lysine ligand, the chromatographic behaviors of epoxy monolith (before lysine bonded) and diol monolith (hydroxyl groups contained) were also investigated. Two groups of comparative experiment were developed in terms of the separation of typical neutral non-polar and polar compounds performed in a mobile phase of aqueous-acetonitrile solution. Results showed that the lysine monolith was much more hydrophilic than the diol monolith, which presented less hydrophobic than the epoxy monolith. For further study on its hydrophilic character, the lysine monolith was demonstrated in the HI-pCEC mode for the separations of various polar compounds such as phenols, nucleic acid bases and nucleosides.  相似文献   

12.
Ye F  Xie Z  Wong KY 《Electrophoresis》2006,27(17):3373-3380
A silica-based monolithic column as polar stationary phase is proposed for pressurized CEC (pCEC). The monolithic silica matrix from a sol-gel process was chemically modified by 3-aminopropyltrimethoxysilane to produce a column for hydrophilic interaction applications. The amino groups on the surface of the polar stationary phase generated anodic EOF under acidic conditions and served at the same time as a weak anion-exchanger. The anion solutes such as nucleotides were separated by the mixed mode mechanism, which comprised hydrophilic interaction, weak anion-exchange, and electrophoresis. The influences of buffer concentration and organic modifier content on the separation of nucleotides by pCEC have been investigated. In addition, the monolithic silica columns were also able to separate various polar compounds such as phenols, nucleic acid bases, and nucleosides in the hydrophilic interaction CEC mode.  相似文献   

13.
A series of ionic liquids (ILs) monolithic capillary columns based on 1-vinyl-3-octylimidazolium (ViOcIm+) were prepared by two approaches (“one-pot” approach and “anion-exchange” approach). The effects of different anions (bromide, Br; tetrafluoroborate, BF4; hexafluorophosphate, PF6; and bis-trifluoromethanesulfonylimide, NTf2) on chromatography performance of all the resulting columns were investigated systematically under capillary electrochromatography (CEC) mode. The results indicated that all these columns could generate a stable reversed electroosmotic flow (EOF) over a wide pH range from 2.0 to 12.0. For the columns prepared by “one-pot” approach, the EOF decreased in the order of ViOcIm+Br > ViOcIm+BF4 > ViOcIm+PF6 > ViOcIm+NTf2 under the same CEC conditions; the ViOcIm+Br based column exhibited highest column efficiencies for the test small molecules; the ViOcIm+NTf2 based column possessed the strongest retention for aromatic hydrocarbons; and baseline separation of four standard proteins was achieved on ViOcIm+NTf2 based column corresponding to the highest column efficiency of 479 000 N m−1 for cytochrome c (Cyt c). These results indicated that the property of ILs based columns could be tuned successfully by changing anions, which gave these columns potential to separate both small molecules and macro biomolecules.  相似文献   

14.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

15.
Wistuba D  Schurig V 《Electrophoresis》2000,21(15):3152-3159
A chiral monolithic stationary phase was prepared by packing a capillary with bare porous silica and sintering the silica bed at high temperature. The resulting silica monolith was polymer-coated with Chirasil-Dex, a permethylated beta-cyclodextrin covalently linked via an octamethylene spacer to dimethylpolysiloxane. Subsequently, Chirasil-Dex was thermally immobilized on the silica support and a chiral monolith of very high stability (30 kV, more than 400 bar pressure) was obtained. The enantiomer separation of various chiral compounds by monolithic (rod) capillary electrochromatography (rod-CEC) was feasible. This method was compared with capillary liquid chromatography (LC) in a single-column mode using unified equipment. About two to three times higher efficiency was found in the rod-CEC mode as compared to rod-LC. The influence of pressure-driven flow support on efficiency, resolution, elution time and baseline stability was investigated. The amount and nature of organic modifier strongly influences efficiency and resolution.  相似文献   

16.
Li Y  Liu H  Ji X  Li J 《Electrophoresis》2000,21(15):3109-3115
A capillary electrochromatography (CEC) method with diode-array detection has been developed for the separation of the therapeutically important anthraquinones from Rhubarb extract and commercial traditional Chinese drugs containing Rhubarb. The separation of four major anthraquinones (aloe-emodin, emodin, chrysophanol, and physcion) was optimized with respect to pH and concentration of buffers, addition of acetonitrile, applied voltage, and column temperature. Baseline separation was achieved for the four anthraquinones in less than 12 min using a background electrolyte consisting of 5 mM acetic acid (pH 4.5) with 80% acetonitrile. The possibility of CEC for the analysis of traditional Chinese medicines was discussed.  相似文献   

17.
李新燕  王彦  谷雪  陈妍  阎超 《色谱》2010,28(3):231-235
以甲基丙烯酸丁酯(BMA)和3-[N,N-二甲基-[2-(2-甲基丙-2-烯酰氧基)乙基]铵]丙烷-1-磺酸内盐(SPE)为单体,制备了新型的亲水作用毛细管整体柱,并通过三聚氰胺在此柱上的保留行为证明其具有亲水性。以加压毛细管电色谱(pCEC)技术为平台,优化了整体柱基于亲水作用分离分析奶制品中三聚氰胺的色谱条件。当流动相中乙腈与10 mmol/L磷酸盐缓冲液的体积比为80:20, pH为3.0,电压为3 kV,检测波长为215 nm时,三聚氰胺能获得很好的分离。方法学考察结果表明,合成的亲水整体柱具有良好的重现性和渗透性,建立的pCEC分析方法的检出限为0.05 mg/L。该方法简单方便,回收率较高,而且流动相中无需添加离子对试剂,适合于奶制品中三聚氰胺的定量测定。  相似文献   

18.
Gao Y  Wang Y  Wang C  Gu X  Yan C 《色谱》2012,30(5):487-494
以N,N-二甲基-N-甲基丙烯酰胺基丙基-N,N-二甲基-N-丙烷磺酸内盐(SPP)为单体,季戊四醇三丙烯酸酯(PETA)为交联剂,偶氮二异丁腈(AIBN)为引发剂及两类不同的致孔剂(乙醇/乙二醇和甲醇/1,4-丁二醇)制备了两种新型亲水性整体柱。为了获得理想的柱效、电渗流速度和渗透性,对制备整体柱的各反应物配比进行了研究和优化。比较了两种整体柱在渗透性和分离样品方面的性能,结果表明,以乙醇/乙二醇为致孔剂制备的整体柱在柱效、分离度方面优于以甲醇/1,4-丁二醇为致孔剂制备的整体柱,但在渗透性方面不及后者。探讨了流动相中盐浓度对核苷类样品保留的影响,发现当甲酸铵浓度从10 mmol/L增加到70 mmol/L时,核苷样品的保留因子呈现先增加后减小的状态。将制备的整体柱用于毛细管液相色谱和加压电色谱分别分离胺类、酚类和核苷类样品,获得了理想的分离效果。在分离酚类和核苷类混合样品时,发现加压毛细管电色谱在分离度和分离速度上均优于毛细管液相色谱。  相似文献   

19.
This article is aimed at providing a review of the progress made over the past decade in the preparation of polar monoliths for hydrophilic interaction LC (HILIC)/capillary electrochromatography (HI-CEC) and in the design of immuno-monoliths for immunoaffinity chromatography that are based on some of the polar monolith precursors used in HILIC/HI-CEC. In addition, this review article discusses some of the applications of polar monoliths by HILIC and HI-CEC, and the applications of immuno-monoliths. This article is by no means an exhaustive review of the literature; it is rather a survey of the recent progress made in the field with 83 references published in the past decade on the topics of HILIC and immunoaffinity chromatography monoliths.  相似文献   

20.
A rapid capillary electrochromatography (CEC) method was developed to separate five structurally related steroid compounds from the production line of steroid hormones. The separation was performed on a Hypersil C8 MOS and Unimicro C18 stationary phases using acetonitrile (ACN), methanol (MeOH), and tetrahydrofuran (THF) as organic modifiers and tris(hydroxymethyl)aminomethane (Tris) as buffer additive. The Hypersil C8 MOS stationary phase performed best together with ACN as organic modifier and Tris buffer. The method was extensively tested for ruggedness with respect to sensitivity to temperature, ACN composition, pH change, concentration of Tris buffer, injected plug length, and run‐to‐run and day‐to‐day repeatability. The minimal detectable concentration and amount were investigated for quantification purposes. The developed CEC method was shown to be fast, rugged, and well suited for quantification of the steroids under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号