首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
S1 --> S(n) spectra of porphyrin, diprotonated porphyrin, and tetraoxaporphyrin dication have been measured in the energy range 2-3 eV above S1 at room temperature in solution by means of transient absorption spectroscopy exciting with femtosecond pulses. Highly excited pi pi* states not active in the conventional S0 --> S(n) spectrum have been observed. The experimental data are discussed on the basis of the time dependent density functional theory taking advantage of large scale calculations of configuration interaction between singly excited configurations (DF/SCI). The DF/SCI calculation on porphyrin has allowed to assign g states active in the S1 --> S(n) spectrum. Applying the same calculation method to tetraoxaporphyrin dication the S0 --> S(n) spectrum is reproduced relatively to the Q and B (Soret) bands as well as to the weaker E(u) bands at higher energy. According to our calculation the S1 --> S(n) transient spectrum is related to states of g symmetry mainly arising from excitations between doubly degenerate pi and pi* orbitals such as 2e(g) --> 4e(g). In the case of diprotonated porphyrin it is shown that the complex of the macrocycle with two trifluoroacetate anions plays a significant role for absorption. Charge transfer excitations from the anions to the macrocycle contribute to absorption above the Soret band, justifying the intensity enhancement of the S0 --> S(n) spectrum with respect to the other two macrocyclic systems.  相似文献   

2.
The ground and electronically excited states of cyclic N(3) (+) are characterized at the equilibrium D(3h) geometry and along the Jahn-Teller distortions. Lowest excited states are derived from single excitations from the doubly degenerate highest occupied molecular orbitals (HOMOs) to the doubly degenerate lowest unoccupied molecular orbitals (LUMOs), which give rise to two exactly and two nearly degenerate states. The interaction of two degenerate states with two other states eliminates linear terms and results in a glancing rather than conical Jahn-Teller intersection. HOMO-2-->LUMOs excitations give rise to two regular Jahn-Teller states. Optimized structures, vertical and adiabatic excitation energies, frequencies, and ionization potential (IP) are presented. IP is estimated to be 10.595 eV, in agreement with recent experiments.  相似文献   

3.
In order to assess the accuracy of wave-function and density functional theory (DFT) based methods for excited states of the uranyl(VI) UO2(2+) molecule excitation energies and geometries of states originating from excitation from the sigma(u), sigma(g), pi(u), and pi(g) orbitals to the nonbonding 5f(delta) and 5f(phi) have been calculated with different methods. The investigation included linear-response CCSD (LR-CCSD), multiconfigurational perturbation theory (CASSCFCASPT2), size-extensivity corrected multireference configuration interaction (MRCI) and AQCC, and the DFT based methods time-dependent density functional theory (TD-DFT) with different functionals and the hybrid DFTMRCI method. Excellent agreement between all nonperturbative wave-function based methods was obtained. CASPT2 does not give energies in agreement with the nonperturbative wave-function based methods, and neither does TD-DFT, in particular, for the higher excitations. The CAM-B3LYP functional, which has a corrected asymptotic behavior, improves the accuracy especially in the higher region of the electronic spectrum. The hybrid DFTMRCI method performs better than TD-DFT, again compared to the nonperturbative wave-function based results. However, TD-DFT, with common functionals such as B3LYP, yields acceptable geometries and relaxation energies for all excited states compared to LR-CCSD. The structure of excited states corresponding to excitation out of the highest occupied sigma(u) orbital are symmetric while that arising from excitations out of the pi(u) orbitals have asymmetric structures. The distant oxygen atom acquires a radical character and likely becomes a strong proton acceptor. These electronic states may play an important role in photoinduced proton exchange with a water molecule of the aqueous environment.  相似文献   

4.
New mono- and bis[4-(3-hydroxy-2-methyl-4-quinolinoyloxy)-2,2,6,6-tetramethylpiperidin-1-oxyl](meso-tetraphenylporphyrinato)yttrium(III) complexes have been synthesized, and the properties of the excited states generated by photoexcitation of porphyrin were studied by time-resolved (TR) and pulsed two-dimensional electron paramagnetic resonance (EPR) spectroscopy. A TR-EPR spectrum was observed in the quartet (S=3/2) or quintet (S=2) states generated from interactions of one or two radicals with the photoexcited triplet state of the porphyrin. The zero-field splitting D values of these states were analyzed in terms of those of the triplet and the radical-triplet pair. The spin states of the excited states were definitely assigned by measuring the mutation frequencies with pulsed EPR.  相似文献   

5.
The electronic spectra of UO(2) (2+) and [UO(2)Cl(4)](2-) are calculated with a recently proposed relativistic time-dependent density functional theory method based on the two-component zeroth-order regular approximation for the inclusion of spin-orbit coupling and a noncollinear exchange-correlation functional. All excitations out of the bonding sigma(u) (+) orbital into the nonbonding delta(u) or phi(u) orbitals for UO(2) (2+) and the corresponding excitations for [UO(2)Cl(4)](2-) are considered. Scalar relativistic vertical excitation energies are compared to values from previous calculations with the CASPT2 method. Two-component adiabatic excitation energies, U-O equilibrium distances, and symmetric stretching frequencies are compared to CASPT2 and combined configuration-interaction and spin-orbit coupling results, as well as to experimental data. The composition of the excited states in terms of the spin-orbit free states is analyzed. The results point to a significant effect of the chlorine ligands on the electronic spectrum, thereby confirming the CASPT2 results: The excitation energies are shifted and a different luminescent state is found.  相似文献   

6.
A comprehensive treatment is given of the electronic excitation spectra of Mg, Zn and Ni complexes of porphyrin and porphyrazine using time-dependent density functional theory (TDDFT). It is emphasized that the Kohn–Sham (KS) molecular orbital (MO) method, which is the basis for the TDDFT calculations, affords a MO interpretation of the ground state electronic structure and of the nature of the excitations. This implies that a direct connection can be made to many previous MO treatments of the title compounds. We discuss in particular, how the original explanations of the intensity distribution over the lowest excitations (the Q and B bands) in terms of a cyclic polyene model, or even a free-electron model, can be reconciled with the actual molecular and electronic structure of these compounds being much more complicated than these simple models. A fragment approach is used, building the porphyrin ring from pyrrole rings and CH or N bridges. This leads directly to a simple interpretation of the orbitals of Gouterman's four-orbital model, which are responsible for the Q and B bands. It also leads to additional occupied π-orbitals which are absent in the cyclic polyene model and which need to be invoked to understand other features of the electronic spectra such as the origin of the N, L and M bands. Considerable attention is given to the intensities of the various transitions, explaining why the transitions within the so-called four-orbital model of Gouterman have large transition dipoles, why transitions from additional occupied π-orbitals have relatively small transition dipoles.  相似文献   

7.
The electronic spectroscopy of CH3Mn(CO)5 has been investigated by means of ab initio multiconfigurational MS-CASPT2/CASSCF calculations. The absorption spectrum is characterized by a series of Metal-Centered (MC) excited states in the UV energy domain (below 290 nm) that could be responsible for the observed photoreactivity starting at 308 nm. The upper part of the spectrum is overcrowded between 264 and 206 nm and dominated by a high density of Metal-to-Ligand-Charge-Transfer (MLCT) states corresponding mainly to 3d(Mn) --> pi*(CO) excitations. A non-negligible contribution of Metal-to-sigma-Bond-Charge-Transfer (MSBCT) states corresponding to 3d(Mn) --> sigma*(Mn-CH3) excitations is also present in the theoretical spectrum of CH3Mn(CO)5. However, in contrast to other transition metal hydrides and methyl substituted (HMn(CO)5, HCo(CO)4, and CH3Co(CO)4) these MSBCT transitions do not participate to the lowest bands of the spectrum as main contributions. The photochemistry of CH3Mn(CO)5, namely the loss of a CO ligand vs. the metal-methyl bond homolysis, is investigated by means of MS-CASPT2 states correlation diagrams. This study illustrates the complexity of the photodissociation mechanism of this class of molecules, which involves a large number of nearly degenerate electronic states with several channels for fragmentation.  相似文献   

8.
State of the art CASSCF and CASPT2 calculations have been performed to elucidate the nature of the electronic transitions observed in the experimental spectrum of the octacyanomolybdate(V) cation. Assuming a triangular dodecahedral structure for this complex gives a convincing agreement between theory and experiment. All absorption bands are assigned to low-lying charge-transfer transitions involving excitations from ligand orbitals to 4dx2-y2. The calculated molecular orbitals reveal weak pi interactions between the metal and ligand orbitals, compared to much stronger sigma interactions. This calculated electronic structure substantiates the previous hypothesis concerning the giant spin ground states of magnetic clusters and networks containing Mo(CN)8(3-) as a constituent part.  相似文献   

9.
The knowledge of bond activation forms a cornerstone for modern chemistry, wherein symmetry rules of electronic activation lie in the heart of bond activation. However, the question as to how a chemical bond is activated remains elusive. By taking CO activated on Fe(100), herein, we have resolved the long-standing fundamental question; we have found that excitations in the adsorbate feature the bond activation. We essentially have discovered contrasting electronic processes in respective σ and π electron systems of the adsorbed CO molecule. The σ electron system is involved in reversible hidden excitations/deexcitations between two occupied σ orbitals, whereas the π electron system is subject to irreversible π to π* excitations dispersed along the d-band region, which is coupled to the rotational 2π electron couplings depending on the strength of molecule-metal interactions. The σ excitations pertain to the Pauli repulsion mediated quantum nature with energy and entropy marked by the two energy levels, whereas the π to π* excitations fall into a new category of electronic excitations contributing to energy and entropy exchanges in a wide and continuous d-band region. The findings that the internal states of the adsorbate are excited and that fundamental connections between the frontier orbitals and low-lying orbitals are established as the molecule comes to the surface may open up new channels to realize more efficient bond activation and renew our thinking on probing the quantum mechanical nature of bond activation at surfaces with further possible impact on manipulation of orbital activation in femtochemistry and attochemistry.  相似文献   

10.
5-(Diphenylphosphanyl)-10,15,20-triarylporphyrins (meso-phosphanylporphyrins) underwent complexations with palladium(II) and platinum(II) salts to afford phosphapalladacycle- and phosphaplatinacycle-fused coplanar porphyrin dimers, respectively, via regioselective peripheral β-C-H activation of the meso-phosphanylporphyrin ligands. The optical and electrochemical properties of these metal-linked porphyrin dimers as well as their porphyrin monomer/dimer references were investigated by means of steady-state UV-vis absorption/fluorescence spectroscopy, cyclic and differential pulse voltammetry, time-resolved spectroscopy (fluorescence and transient absorption lifetimes and spectra), and magnetic circular dichroism spectroscopy. All the observed data clearly show that the palladium(II) and platinum(II) linkers play crucial roles in the electronic communication between two porphyrin chromophores at the one-electron oxidized state and in the singlet-triplet intersystem-crossing process at the excited state. It has also been revealed that the C-Pt-C linkage makes more significant impacts on these fundamental properties than the C-Pd-C linkage. Furthermore, density functional theory calculations on the metal-linked porphyrin dimers have suggested that the antibonding dπ-pπ orbital interaction between the peripherally attached metal and adjacent pyrrolic β-carbon atoms destabilizes the highest occupied molecular orbitals of the porphyrin π-systems and accounts for the observed unique absorption properties. On the basis of these experimental and theoretical results, it can be concluded that the linear carbon-metal-carbon linkages weakly but definitely perturb the optical, photophysical, and electrochemical properties of the phosphametallacycle-linked coplanar porphyrin dimers.  相似文献   

11.
The electronic origins of the magnetic signatures of [Fe(2)O(2)(5-Et(3)-TPA)(2)](ClO(4))(3), where 5-Et(3)-TPA = tris(5-ethyl-2-pyridylmethyl)amine, were investigated by density functional calculations. These signatures consist of a near-axial EPR spectrum, anisotropic superhyperfine broadening upon (17)O substitution in the Fe(2)O(2) core, and an unusually large, positive zero-field splitting parameter, D = 38 +/- 3 cm(-1). Density functional calculations identify the anisotropic (17)O superhyperfine broadening to be due to a preponderance of oxo 2p density perpendicular to the plane of the Fe(2)O(2) core in the three singly occupied molecular orbitals of the S = (3)/(2) ground state. The near-axial g-matrix arises from DeltaS = 0 spin-orbit mixing between the singly and doubly occupied d(pi) orbitals of the iron d-manifold. The large D is due to DeltaS = +/-1 spin-orbit mixing with low-lying d(pi) excited states. These experimental observables reflect the dominance of iron-oxo (rather than Fe-Fe) bonding in the Fe(2)O(2) core, and define the low-lying valence orbitals responsible for reactivity.  相似文献   

12.
Transition states and reaction paths for a hydrogen molecule dissociating on small aluminum clusters have been calculated using density functional theory. The two lowest spin states have been taken into account for all the Al(n) clusters considered, with n=2-6. The aluminum dimer, which shows a (3)Π(u) electronic ground state, has also been studied at the coupled cluster and configuration interaction level for comparison and to check the accuracy of single determinant calculations in this special case, where two degenerate configurations should be taken into account. The calculated reaction barriers give an explanation of the experimentally observed reactivity of hydrogen on Al clusters of different size [Cox et al., J. Chem. Phys. 84, 4651 (1986)] and reproduce the high observed reactivity of the Al(6) cluster. The electronic structure of the Al(n)-H(2) systems was also systematically investigated in order to determine the role played by interactions of specific molecular orbitals for different nuclear arrangements. Singlet Al(n) clusters (with n even) exhibit the lowest barriers to H(2) dissociation because their highest doubly occupied molecular orbitals allow for a more favorable interaction with the antibonding σ(u) molecular orbital of H(2).  相似文献   

13.
This report describes the synthesis and characterization of a series of octaethylporphyrin derivatives in which the porphyrin pi-network is connected to phenyl, 3-fluoranthenyl, or 1-pyrenyl aromatic systems through a meso amino or amido nitrogen. Metal-free bases and zinc(II) and iron(III) complexes have been obtained. These compounds represent the first examples of linkages between porphyrins and extended pi-networks through a nitrogen atom directly attached to a porphyrin meso position. 1H NMR studies of the metal-free bases and zinc complexes showed that in the amido-linked adducts, the plane containing the aryl substituent was oriented perpendicular to the plane of the porphyrin. Linkage through the secondary amino nitrogen, however, allowed the aryl plane to rotate toward coplanarity with the porphyrin plane, resulting in conjugation of the highest occupied aryl and porphyrin molecular orbitals through the nitrogen lone pair. In developing routes to the amino-linked compounds, the facile formation of fused azaaryl chlorins via an oxidative intramolecular cycloaddition was observed. An aryl carbon ortho to the meso linkage attacked the beta-carbon of an adjacent pyrrole ring, accompanied by 1,2-migration of a pyrrole beta-ethyl substituent and a two-electron oxidation of the initially formed macrocycle. The resulting structures are analogous to benzochlorins. The electronic spectra of the metal-free bases are characterized by intense, long-wavelength bands in the visible region. Molecular structures of the chloroferric complexes of the azabenzofluorantheno- and azabenzpyrenoporphyrin macrocycles (derived from fusion of the fluoranthenyl and pyrenyl substituents, respectively) were obtained by X-ray diffraction. The porphyrin moiety in the azabenzofluoranthenoporphyrin adopted a gable structure, with a 22 degrees fold along a diagonal including the pyrrole-ring C4 and C16 alpha-carbons. By contrast, the azabenzpyrenoporphyrin was virtually planar.  相似文献   

14.
15.
An experimental and theoretical study of the electronic structure of copper phthalocyanine (CuPc) molecule is presented. We performed x-ray photoemission spectroscopy (XPS) and photoabsorption [x-ray absorption near-edge structure (XANES)] gas phase experiments and we compared the results with self-consistent field, density functional theory (DFT), and static-exchange theoretical calculations. In addition, ultraviolet photoelectron spectra (UPS) allowed disentangling several outer molecular orbitals. A detailed study of the two highest occupied orbitals (having a(1u) and b(1g) symmetries) is presented: the high energy resolution available for UPS measurements allowed resolving an extra feature assigned to vibrational stretching in the pyrrole rings. This observation, together with the computed DFT electron density distributions of the outer valence orbitals, suggests that the a(1u) orbital (the highest occupied molecular orbital) is mainly localized on the carbon atoms of pyrrole rings and it is doubly occupied, while the b(1g) orbital, singly occupied, is mainly localized on the Cu atom. Ab initio calculations of XPS and XANES spectra at carbon K edge of CuPc are also presented. The comparison between experiment and theory revealed that, in spite of being formally not equivalent, carbon atoms of the benzene rings experience a similar electronic environment. Carbon K-edge absorption spectra were interpreted in terms of different contributions coming from chemically shifted C 1s orbitals of the nonequivalent carbon atoms on the inner ring of the molecule formed by the sequence of CN bonds and on the benzene rings, respectively, and also in terms of different electronic distributions of the excited lowest unoccupied molecular orbital (LUMO) and LUMO+1. In particular, the degenerate LUMO appears to be mostly localized on the inner pyrrole ring.  相似文献   

16.
Low-spin ferric porphyrin radical cations formed by the oxidation of chloro(meso-tetraalkylporphyrinato)iron(III) followed by the addition of bulky 2-methylimidazole show antiferromagnetic coupling, which is interpreted in terms of the interaction between porphyrin a2u and iron d(xy), orbitals caused by the S4 ruffling of the porphyrin core.  相似文献   

17.
The electronically excited states of the Si(100) surface and acetylene, benzene, and 9,10-phenanthrenequinone adsorbed on Si(100) are studied with time-dependent density functional theory. The computational cost of these calculations can be reduced through truncation of the single excitation space. This allows larger cluster models of the surface in conjunction with large adsorbates to be studied. On clean Si(100), the low-lying excitations correspond to transitions between the pi orbitals of the silicon-silicon dimers. These excitations are predicted to occur in the range 0.4-2 eV. When organic molecules are adsorbed on the surface, surface --> molecule, molecule --> surface, and electronic excitations localized within the adsorbate are also observed at higher energies. For acetylene and benzene, the remaining pipi* excitations are found to lie at lower energies than in the corresponding gas-phase species. Even though the aromaticity of 9,10-phenanthrenequinone is retained, significant shifts in the pipi* excitations of the aromatic rings are predicted. This is in part due to structural changes that occur upon adsorption.  相似文献   

18.
A set of substituted (sulfonate, amino) nickel porphyrin derivatives such as phthalocyanine and phenylporphyrin was studied by spectroscopic (UV-vis, FTIR, XPS) and quantum-chemical methods. The Q and Soret bands were identified in the UV-vis spectra of aquo solutions of the tetrasulfo-substituted complexes and in DMF and ACN solutions of the amino-substituted phenylporphyrin and phthalocyanine Ni(II) complexes, respectively. In all the complexes the frontier molecular orbitals predict that the oxidation and reduction sites are localized on the ligand rather than in the metal atom. A natural bonding orbital (NBO) analysis of all the complexes showed that a two-center bond NBO between the pyrrolic nitrogens (Npyrr) and the nickel atom does not exist, the Npyrr...Ni interaction occurring instead by a delocalization from one lone pair of each Npyrr toward one lone pair of the nickel atom, as estimated by second-order perturbation theory. The calculated values of electronic transitions between the frontier molecular orbitals are in good agreeement with the UV-vis data. At the theoretical level, we found that while the ligand effect is more important in the Q-band (approximately 16 kcal/mol), the substituent effect is more significant in the Soret band (approximately 9 kcal/mol). A good agreement was also found between the experimental and calculated infrared spectra, which allowed the assignment of many experimental bands. The XPS results indicate that the Ni(II) present in the phenylporphyrin structure is not affected by a change of the substituent (sulfonate or amino).  相似文献   

19.
B3LYP geometry optimizations for the [MNH2]+ complexes of the first-row transition metal cations (Sc+-Cu+) were performed. Without any exception the ground states of these unsaturated amide complexes were calculated to possess planar geometries. CASPT2 binding energies that were corrected for zero-point energies and including relativistic effects show a qualitative trend across the series that closely resembles the experimental observations. The electronic structures for the complexes of the early and middle transition metal cations (Sc+-Co+) differ from the electronic structures derived for the complexes of the late transition metal cations (Ni+ and Cu+). For the former complexes the relative higher position of the 3d orbitals above the singly occupied 2p(pi) HOMO of the uncoordinated NH2 induces an electron transfer from the 3d shell to 2p(pi). The stabilization of the 3d orbitals from the left to the right along the first-row transition metal series causes these orbitals to become situated below the HOMO of the NH2 ligand for Ni+ and Cu+, preventing a transfer from occurring in the [MNH2]+ complexes of these metal cations. Analysis of the low-lying states of the amide complexes revealed a rather unique characteristic of their electronic structures that was found across the entire series. Rather exceptionally for the whole of chemistry, pi-type interactions were calculated to be stronger than the corresponding sigma-type interactions. The origin of this extraordinary behavior can be ascribed to the low-lying sp2 lone pair orbital of the NH2 ligand with respect to the 3d level.  相似文献   

20.
All transitions in the experimentally designated and numbered Q, B, and N bands (< 4.8 eV) of the electronic absorption spectrum of zinc phthalocyanine (ZnPc) are assigned on the basis of one‐to‐one agreement between calculated and experimentally observed transition energies and oscillator strengths. Each band in this range of the spectrum represents a ligand‐based transition that originates from a combination of occupied orbitals and terminates in the lowest unoccupied molecular orbital (LUMO, ). Transition energies in the L and C regions (4.8–6.5 eV) are harder to capture quantitatively, due to the partial Rydberg character of some of the excited states, and so are tentatively assigned here. Most transitions in this range correspond to excitations from the HOMO or lower‐energy orbitals to π orbitals above the LUMO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号