首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypericin has been reported as a potent photosensitizing agent exhibiting antiviral, antibacterial, antineoplastic activities. Although its photophysics and mode of action are strongly modulated by the binding protein, detailed information about its mechanism of interaction with possible cellular targets, including proteins, is still lacking. Previous in vitro studies demonstrated that hypericin can be uptaken by intact lens and is able to bind to the major lens protein "α-crystallin." In this study, the mechanism of interaction of this potent drug with α-crystallin was studied using the chemical denaturant guanidine hydrochloride (GdnHCl) and the hydrophobic surface probe, 8-anilino-1-naphthalenesulfonic acid (ANS). Fluorescence measurements showed that the increased exposure of tryptophan resulting from partial unfolding of α-crystallin incubated with 1.0 mol L−1 of GdnHCl corresponds to the maximum accessibility of hydrophobic sites to ANS at the same GdnHCl concentration. Interestingly at this additional hydrophobicity of the protein, hypericin exhibited its maximum fluorescence intensity. This in vitro study implied that hydrophobic sites of α-crystallin play a significant role in its interaction with hypericin. The binding between α-crystallin and hypericin was found to be enhanced by partial perturbation of the protein.  相似文献   

2.
The steady-state UVA (350 nm) photolysis of ( E )-β-ionone ( 1 ) in aerated toluene solutions was studied by 1H NMR spectroscopy. The formation of the 1,2,4-trioxane ( 2 ) and 5,8-endoperoxide ( 5 ) derivatives in the ratio of 4:1 was observed. Time-resolved laser induced experiments at 355 nm, such as laser-flash photolysis, photoacoustic and singlet oxygen 1O2 phosphorescence detection, confirmed the formation of the excited triplet state of 1 with a quantum yield Φ T = 0.50 as the precursor for the generation of singlet oxygen 1O2 ( Φ Δ = 0.16) and the isomeric α-pyran derivative ( 3 ), which was a reaction intermediate detected by NMR. In turn, the reaction of 1O2 with 1 and 3 occurred with rate constants of 1.0 × 106 and 2.5 × 108  m −1s−1 to yield the oxygenated products 5 and 2 , respectively, indicating the relevance of the fixed s-cis configuration in the α-pyran ring in the concerted [2+4] cycloaddition of 1O2.  相似文献   

3.
Abstract— Irradiation of aqueous solutions of plasmid DNA (pUC18) at pH 7.6 with 193 nm laser light results in low yields of prompt single strand breakage (air-saturated sample φssb= [1.5 ± 0.1] ± 10−4, argon-saturated sample φssb= [0.9 ± 0.1] ± 10−4). Treatment of the irradiated DNA samples with Escherichia coli formamidopyrimi-dine-DNA glycosylase (Fpg) protein results in an approximate 20-fold increase in the yield of single strand breakage (air-saturated sample φfpg= [33.1 ± 3.1] ± 10−4, argon-saturated sample φfpg= [23.8 ± 2.6] × 10 4). This result indicates that 193 nm light induces other modification) (most likely of the purine moieties) that are 20 times more abundant than prompt strand breakage within the DNA matrix.  相似文献   

4.
The effect of 300 nm irradiation on the three lens crystallins, α-, β-, and γ-, was studied by using fluorescence and circular dichroism techniques. α-Crystallin showed a pronounced change in tertiary structure as manifested in fluorescence and circular dichroism measurements. This finding is in agreement with our earlier findings that the tryptophan residues of α-crystallin are more exposed than those of the other two crystallins. The results of studies using inhibitors specific for the different active species of oxygen suggest that H2O2-mediated damage is involved in the change of tertiary structure of the proteins. Analyses of circular dichroism spectra indicate that, upon irradiation, the secondary structure of α-crystallin remains virtually unaltered, and that the change in tertiary structure results primarily from photoinduced damage to the tryptophan residues.  相似文献   

5.
Abstract— By means of in situ photolysis EPR of aqueous solutions of α-oxocarboxylic acids (RCO-CO2H) at pH values above 5, semidione radical anions [RC(O-)=C(O')R] and α-hydroxy-α-carboxy alkyl radicals [RC(OH)CO2-] were detected. C02 was identified as a reaction product. On photolysis of mixtures of α-oxocarboxylic acids (RCOCO2H and R'COCC2H), "mixed" semidione radical anions [RC(O->=C(O)R'] were observed in addition to RC(O-)=C(O')R, R'C(O-)=C(O')R', RC(OH)CO2- and R'C(OH)CO2-. The experimental results are explained in terms of photodecarboxylation (α-clea-vage) of electronically excited RCOCOJ to yield RCO and CO2. The radicals RC(OH)CO2- are formed by reduction of RCOCO2- by CO2-. The semidione radicals are produced by addition of RCO to RCOCO2- followed by decarboxylation of the intermediate adduct. This mechanism was confirmed by generating acyl radicals independently and reacting them with α-oxocarboxylic acids. Selected product studies support the mechanism suggested.  相似文献   

6.
Abstract— A fluorescence quantum yield (emission at650–850 nm) of π= (2.3 ± 0.3)10−3 was measured for the red-absorbing form (Pr) of 124-kDa phytochrome from etiolated oat seedlings ( Avena sativa ) upon excitation in the Soret band at Λexc= 380 nm. The small difference between this value and the previously determined quantum yield with Λexc= 640 nm, π= (3.5 ± 0.4)10−3is attributed to a blue-absorbing emitter responsible for the "anomalous" or "blue" emission of the chromoprotein in the region from ca. 400 to 550 nm. The absorption of Pr at 380 nm is consequently somewhat lower than that measured directly from the spectrum. Processes from upper excited states of the Pr phytochromobilin-derived chromophore other than rapid relaxation to the emitting state are not important. A quantum yield of Φ ' 1.2 times 10−3 is estimated for the blue fluorescence. The proportion of the blue emitters relative to Pr appears to be relatively high.  相似文献   

7.
The core linker polypeptide Lc8.9 was isolated from Mastigocladus laminosus and purified on a preparative scale. A method for the reconstitution of allophycocyanin (AP)—linker complexes from isolated polypeptides was developed. The complex (αAPAP)3 Lc8.9 was reconstituted and compared to (αAPβAP) and (αAPβAP)3 by sucrose density gradient ultracentrifugation, absorption, fluorescence emission and circular dichroism spectroscopy. Differences in the spectra of reconstituted and of directly isolated AP complexes are discussed.  相似文献   

8.
Abstract— Ferrideuteroporphyrin in benzene, water or micelle solutions containing primary or secondary alcohols as well as in pure or basic 2-propanol solutions is clearly reduced to the ferrous state by continuous light irradiation in the Soret region. Quantum yields range between 4 × 10−4 and 3 × 10−2 depending on the solvents used and on the coordination state of the ferric porphyrin. As inferred from laser pulse photolysis experiments, the primary chemical step appears to be the homolytic cleavage of the bond between the ferric ion and a coordinated alcoholate anion leading to the ferrous porphyrin and the alkoxy radical. This cleavage is found to occur within less than 50 ns. The alkoxy radical rearranges leading to the α-hydroxyalkyl radical which reacts with excess ferric porphyrin leading to further reduction. The reaction rate constant for the reaction of α-hydroxyisopropyl radicals is found to be k = (2.1 ± 0.3) × 108 M −1 s−1 in pure 2-propanol. As expected, this rate is greatly increased in basic 2-propanol where α-hydroxyisopropyl radicals deprotonate.  相似文献   

9.
The Girard's reagent P derivative of canthaxanthin ((GRP)2-canthaxanthin), a dicationic carotenoid, forms a highly water-dispersible complex with (2-hydroxypropyl)-γ-cyclodextrin. The UV–visible light spectrum of the complex is consistent with some degree of aggregation, but the spectrum is independent of concentration from 7.5 to 750 μ m . Stern-Vomer plots for singlet-oxygen quenching by the complex are linear over a concentration range of 0–20 μ m . In the presence of 1 m m (2-hydroxypropyl)-γ-cyclodextrin, the singlet-oxygen quenching constant for the complex is 7.9 ± 0.9 × 108  m −1s−1. This is about an order of magnitude lower than the singlet-oxygen quenching constants for (GRP)2-canthaxanthin in various organic solvents. The properties of the complex are also compared with the properties of (GRP)2-canthaxanthin solubilized in neat water and in water containing various detergents. The singlet-oxygen quenching constant for (GRP)2-canthaxanthin in micelles depends strongly on the specific detergent used, varying from 9.4 × 108  m −1s−1 for hexadecyltrimethylammonium bromide (CTAB) to 1.24 ± 0.4 × 1010  m −1s−1 for sodium dodecyl sulfate. The small quenching constant in CTAB micelles correlates with spectroscopic evidence for aggregation of the (GRP)2-canthaxanthin in this detergent.  相似文献   

10.
Triplet formation quantum yields (Φτ) of psoralen in a set of 17 pure solvents ranging from n -hexane to water and in dioxane: water mixtures were obtained by nanosecond laser flash photolysis. The triplet yield increases with solvent polarity. The extremum values are 0.009 and 0.545 in n -hexane and water, respectively. Good correlations of the experimental Φτ values with empirical "polarity" scales (Dimroth/Reichardt's ET [30], Kamlet/Taft's solva-tochromic parameters β, and α, and Swains acity/basity AS/BS) were obtained: Ln(φT-1 - 1) = 8.86 - 0.143ET(30) Ln(φT-1 - 1) = 4.40 - 2.34τ - 1.70α Ln(φT-1 - 1) = 4.65 - 3.72As - 1.12Bs The results are discussed in terms of the sensitivity of psoralen triplet quantum yield to solvent polarity and hydrogen-bonding abilities.  相似文献   

11.
Abstract— N,N'-bis(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC), a lipophilic dye with a delocalized positive charge, photosensitizes cells to visible irradiation. In phosphate-buffered saline (PBS), EDKC absorbs maximally at 700 nm (ε= 1.2 × 105 M−1 cm−1) and in methanol, the absorption maximum is at 706 nm (ε= 2.3 × 105 M−1 cm−1). EDKC partitions from PBS into small unilamellar liposomes prepared from saturated phospholipids and into membranes prepared from red blood cells (RBC) and binds to human serum albumin (HSA). The EDKC fluorescence maximum red shifts from 713 nm in PBS to 720–725 nm in liposomes and RBC membranes and the fluorescence intensity is enhanced by factors of 14–35 compared to PBS (φ= 0.0046). EDKC is thermally unstable in PBS (T1/2= 2 h at 1.3 × 10−5 M EDKC), but stable in methanol. In liposomes and RBC membranes, EDKC is 10 times more stable than in PBS, indicating that it is only partially exposed to the aqueous phase. Quenching of EDKC fluorescence in liposomes and RBC membranes by trinitrobenzene sulfonate also indicates that EDKC is not buried within the membranes. Photodecomposition of EDKC was oxygen-dependent and occurred with a low quantum yield (6.4 × 10−4 in PBS). Singlet oxygen was not detected upon irradiation of EDKC in membranes or with HSA since the self-sensitized oxidation of EDKC occurred at the same rate in D2O as in H2O and was not quenched by sodium azide or histidine.  相似文献   

12.
Abstract—
The interaction between human α1-acid glycoprotein (orosomucoid) and the fluorescent probe, 2- p -toluidinylnaphthalene-6-sulfonate (TNS) has been studied. An association constant of 16.7 (±3) X 103 M -1 was obtained for the complex at 20°C with a stoichiometry of 1:1. From the effect of temperature on the binding process, the standard enthalpy change for the binding is calculated to be ΔH0= -18 ± 3 kJ mol-1 and the standard entropy change ΔS0= 19 ± 12 J K-1 mol-1. The tryptophan fluorescence of the protein can be described by a sum of three exponentials. Upon TNS binding, the average fluorescence lifetime of the protein in the complex changes much less than the fluorescence intensity. The bound TNS is therefore a very efficient acceptor for the protein fluorescence. The TNS bound to orosomucoid presents two fluorescence lifetimes 1 1 and 4.3 ns. The possible origins of the two lifetimes are discussed.  相似文献   

13.
Abstract— The photophysical behaviour of new pyrrolocoumarins with different substituents on the nitrogen are reported. The photophysical properties of these pyrrolocoumarins are generally in agreement with those of the psoralens: a strong absorption (240–400 nm), a weak fluorescence (400–680 nm) characterized by a short singlet lifetime, and a rather strong phosphorescence at 77 K (480–600 nm). The absorption and fluorescence properties were investigated in several solvents. The shift of the fluorescence maximum is interpreted on the basis of the solvatochromic parameters π*, α and β. The triplet-triplet absorption spectra also depend on the nature of the solvent, while the triplet excited state has a lifetime of a few microseconds at room temperature (concentration 2.5 × 10−4 M ). Some absorption and fluorescence characteristics of the 4',5'-dihydropyrrolocoumarins, which are suitable models for the 4',5'-monoadducts to pyrrolocoumarins are reported.  相似文献   

14.
Abstract— The intensity dependence of the rose bengal (RB)-photosensitized inhibition of red blood cell acetylcholinesterase has been studied experimentally and the results compared to a quantitative excitation/deactivation model of RB photochemistry. Red blood cell membrane suspensions containing 5 μ M RB were irradiated with 532 nm, 8 ns laser pulses with energies between 1 and 98.5 mJ. A constant dose (7 J) was delivered to all samples by varying the total number of pulses. At incident energies greater than ∼ 4.5 mJ/pulse, the efficiency for photosensitized enzyme inhibition decreased as the energy/pulse increased. The generation of RB triplet state was monitored as a function of laser energy and the triplet-triplet absorption coefficient was determined to be 1.9 × 104 M −1 cm−1 at 530 nm. The number of singlet oxygen molecules produced at each intensity was calculated from both the physico-mathematical model and from laser flash photolysis results. The results indicated that the photosensitized inhibition of acetylcholinesterase was exclusively mediated by singlet oxygen, even at the highest laser intensities employed.  相似文献   

15.
Abstract— A comparison of the transient absorption spectra from the photolysis of disulfides in solution suggests that C-S bond breakage is a common primary photolytic process. This process becomes more important as the resulting carbon centered radical is stabilized by increasing alkyl substitution or resonance interaction with an aromatic system. The perthiyl radical product is characterized by λmax∽380 nm,ε380∽1700 M −1 cm−1 and decays by second order kinetics with k 2∽3.7×108 M −1 s−1 in water.
In the presence of O2, the photolysis of disulfides which produce the thiyl radical give transient absorptions in the 500–600 nm region. Possible identities of these transients are discussed.  相似文献   

16.
Abstract— Higher excited triplet states originating from the lowest triplet state of isoalloxazines by absorption of light with Λ - 600 nm undergo "inverse" intersystem crossing to the singlet manifold [φ( Tn-Sm ) = 8 × 10-3] followed by rapid internal conversion and "normal" fluorescence S1-S0 with Λm= 540 nm.  相似文献   

17.
Abstract— The fluorescence decay profiles, relative quantum yield, and transmission of the phycoerythrin a subunit, isolated from the photosynthetic antenna system of Nostoc sp., were measured using single picosecond laser excitation. The fluorescence decay profiles were found to be intensity independent for the intensity range investigated (4 × 1013 and 4 × 1015 photons-cm-2 per pulse). The decay profiles were fitted to a model assuming both chromophores absorb and fluoresce. The inferred total deactivation rates for the two chromophores, in the absence of energy transfer and when the effects of the response time of the streak camera and the finite pulse width are properly included, are 1.0 × 1010s' and 1.0 × 109 s 1 for the s and f chromophores. respectively, whereas the transfer rate between the two fluorophorcs is estimated to be 1.0 × 1010 s−1 giving a s→ f transfer rate on the order of (100 ps)−1. Steady-atate polarization measurements were found to be equal to those calculated using the rate parameters inferred from the kinetic model fit to the fluorescence decays. The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is suggestive of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated α subunits for the intensity range investigated (4 × 1013 to 4 × 1015 photons-cm 2 per pulse).  相似文献   

18.
A Water-Soluble Luminescence Oxygen Sensor   总被引:1,自引:0,他引:1  
We developed a water-soluble luminescent probe for dissolved oxygen. This probe is based on (Ru[dpp(SO3Na)2]3) Cl2, which is a sulfonated analogue of the well-known oxygen probe (Ru[dpp]3)Cl2. The compound dpp is 4,7-diphenyl-1,10-phenanthroline and dpp(SO3Na)2 is a disulfonated derivative of the same ligand. In aqueous solution in the absence of oxygen (Ru[dpp(SO3Na)2]3)Cl2 displays a lifetime of 3.7 μs that decreases to 930 ns on equilibrium with air and 227 ns on equilibrium with 100% oxygen. The Stern–Vohner quenching constant is 11330 M−1. This high oxygen-quenching constant means that the photoluminescence of Ru(dpp[SO3Na]2)3Cl2 is 10% quenched at an oxygen concentration of 8.8 x 10−6 M , or equilibration with 5.4 torr of oxygen. The oxygen probe dissolved in water displays minimal interactions with lipid vesicles composed of dipalmityl-L-α-phosphatidyl glycerol but does appear to interact with human serum albumin. The absorption maximum near 480 nm, long lifetime and large Stokes'shift allow this probe to be used with simple instrumentation based on a light-emitting diode light source, allowing low-cost oxygen sensing in aqueous solutions. To the best of our knowledge this is the first practical water-soluble oxygen sensor.  相似文献   

19.
Abstract— Mono- and multilayers of chlorophyll a (Chl a )– lecithin have been prepared on quartz slides, by means of the Blodgett-Langmuir technique, for fluorescence studies. Self-quenching of the Chl a fluorescence has been observed in Chl a -lecithin single layer excited with a laser light at 632.8 nm. The fluorescence yield is reduced by 50% at a concentration of 7 ± 1012 Chl a molecules cm−2. Chl a fluorescence quenching, by adding N,N -distearoyl-1,4-diaminoanthraquinone (SAQ), has been studied. in a single layer, in pure Chl a and also at various dilutions of Chl a in lecithin. The results are explained in terms of a dynamic quenching rather than in terms of a permanent complex formation, at the ground state, between Chl a and SAQ. The fluorescence quenching has been interpreted as the result of an electron transfer from excited Chl a to SAQ, and rate constants of 8.3 ± 10−5 cm2 molecule−1 S−1 and 2.4 ± 10−4 cm2 molecule−1 s−1 have been found for pure diluted Chl a , respectively. Ten per cent of the diluted Chl a fluorescence always remains unquenchable and independent of the quinone concentration. In multilayers, where SAQ and Chl a are in different layers, there is no fluorescence quenching for pure or diluted Chl a even when the chromophores are in two adjacent layers. This happens only if SAQ is not able to diffuse from one layer to another. A minimum value of 22.4 nm has been found for the singlet exciton diffusion length in pure Chl a multilayers.  相似文献   

20.
Abstract— The Stern-Volmer constants for fluorescence quenching by tetramethylethylene decrease in the order DMC ≫ DHP > F-2 > 8-MOP. The same order was observed for the quantum yields of [2+2] cycloaddition reaction with tetramethylethylene on direct irradiation. In [2+2] photocycloaddition of F-2 with tetramethylethylene in ethanol, the ratio of quantum yields deduced from singlet and triplet states of F-2; φ3010, is about 5. The excited triplet state is the reactive state for the [2+2] photocycloaddition of F-2 with tetramethylethylene in solution but the excited singlet state of F-2 becomes very important in biological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号