首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soft anions exhibit surface activity at the air/water interface that can be probed using surface-sensitive vibrational spectroscopy, but the structural implications of this surface activity remain a matter of debate. Here, we examine the nature of anion–water interactions at the air/water interface using a combination of molecular dynamics simulations and quantum-mechanical energy decomposition analysis based on symmetry-adapted perturbation theory. Results are presented for a set of monovalent anions, including Cl, Br, I, CN, OCN, SCN, NO2, NO3, and ClOn (n=1,2,3,4), several of which are archetypal examples of surface-active species. In all cases, we find that average anion–water interaction energies are systematically larger in bulk water although the difference (with respect to the same quantity computed in the interfacial environment) is well within the magnitude of the instantaneous fluctuations. Specifically for the surface-active species Br(aq), I(aq), ClO4(aq), and SCN(aq), and also for ClO(aq), the charge-transfer (CT) energy is found to be larger at the interface than it is in bulk water, by an amount that is greater than the standard deviation of the fluctuations. The Cl(aq) ion has a slightly larger CT energy at the interface, but NO3(aq) does not; these two species are borderline cases where consensus is lacking regarding their surface activity. However, CT stabilization amounts to <20% of the total induction energy for each of the ions considered here, and CT-free polarization energies are systematically larger in bulk water in all cases. As such, the role of these effects in the surface activity of soft anions remains unclear. This analysis complements our recent work suggesting that the short-range solvation structure around these ions is scarcely different at the air/water interface from what it is in bulk water. Together, these observations suggest that changes in first-shell hydration structure around soft anions cannot explain observed surface activities.  相似文献   

2.
The electrical conductivities of aqueous solutions of sodium salts of trans-4-hydroxycinnamic acid (trans-p-coumaric acid), trans-3,4-dihydroxycinnamic acid (trans-caffeic acid), trans-4-hydroxy-3-methoxycinnamic acid, (trans-ferulic acid) and trans-3-phenylacrylic acid (trans-cinnamic acid) with α-cyclodextrin were measured in the temperature range of 288.15 K–318.15 K. For the first time in the literature, using the limiting molar conductivity (Λmo) obtained from conductivity measurements, the values of the complexation constants (Kf) of the salts of phenolic acid derivatives with α-cyclodextrin were determined using a modified low concentration chemical model (IcCM). An attempt was also made to analyze the individual thermodynamic functions ΔGo, ΔHo and ΔSo describing the complexation process as a function of temperature changes. The obtained results show that the process of formation of inclusion complexes is exothermic and is spontaneous.  相似文献   

3.
This research work aims to scrutinize the mathematical model for the hybrid nanofluid flow in a converging and diverging channel. Titanium dioxide and silver TiO2 and Ag are considered as solid nanoparticles while blood is considered a base solvent. The couple-stress fluid model is essentially use to describe the blood flow. Therefore, the couple-stress term was used in the recent study with the existence of a magnetic field and a Darcy–Forchheiner porous medium. The heat absorption/omission and radiation terms were also included in the energy equation for the sustainability of drug delivery. An endeavor was made to link the recent study with the applications of drug delivery. It has already been revealed by the available literature that the combination of TiO2 with any other metal can destroy cancer cells more effectively than TiO2 separately. Both the walls are stretchable/shrinkable, whereas flow is caused by a source or sink with α as a converging/diverging parameter. Governing equations were altered into the system of non-linear coupled equations by using the similarity variables. The homotopy analysis method (HAM) was applied to obtain the preferred solution. The influences of the modeled parameters have been calculated and displayed. The confrontation of wall shear stress and hybrid nanofluid flow increased as the couple stress parameter rose, which indicates an improvement in the stability of the base fluid (blood). The percentage (%) increase in the heat transfer rate with the variation of nanoparticle volume fraction was also calculated numerically and discussed theoretically.  相似文献   

4.
5.
In this paper, we analyzed the mass transfer model with chemical reactions during the absorption of carbon dioxide (CO2) into phenyl glycidyl ether (PGE) solution. The mathematical model of the phenomenon is governed by a coupled nonlinear differential equation that corresponds to the reaction kinetics and diffusion. The system of differential equations is subjected to Dirichlet boundary conditions and a mixed set of Neumann and Dirichlet boundary conditions. Further, to calculate the concentration of CO2, PGE, and the flux in terms of reaction rate constants, we adopt the supervised learning strategy of a nonlinear autoregressive exogenous (NARX) neural network model with two activation functions (Log-sigmoid and Hyperbolic tangent). The reference data set for the possible outcomes of different scenarios based on variations in normalized parameters (α1, α2, β1, β2, k) are obtained using the MATLAB solver “pdex4”. The dataset is further interpreted by the Levenberg–Marquardt (LM) backpropagation algorithm for validation, testing, and training. The results obtained by the NARX-LM algorithm are compared with the Adomian decomposition method and residual method. The rapid convergence of solutions, smooth implementation, computational complexity, absolute errors, and statistics of the mean square error further validate the design scheme’s worth and efficiency.  相似文献   

6.
In this paper, the degradation of the diazo dye naphthol blue black (NBB) using the Galvano-Fenton process is studied experimentally and numerically. The simulations are carried out based on the anodic, cathodic, and 34 elementary reactions evolving in the electrolyte, in addition to the oxidative attack of NBB by HO at a constant rate of 3.35×107 mol1·m3·s1 during the initiation stage of the chain reactions. The selection of the operating conditions including the pH of the electrolyte, the stirring speed, and the electrodes disposition is performed by assessing the kinetics of NBB degradation; these parameters are set to 3, 350 rpm and a parallel disposition with a 3 cm inter-electrode distance, respectively. The kinetics of Fe(III) in the electrolyte were monitored using the principles of Fricke dosimetry and simulated numerically. The model showed more than a 96% correlation with the experimental results in both the blank test and the presence of the dye. The effects of H2O2 and NBB concentrations on the degradation of the dye were examined jointly with the evolution of the simulated H2O2, Fe2+, and HO concentrations in the electrolyte. The model demonstrated a good correlation with the experimental results in terms of the initial degradation rates, with correlation coefficients exceeding 98%.  相似文献   

7.
Photocatalytic nanomaterials, using only light as the source of excitation, have been developed for the breakdown of volatile organic compounds (VOCs) in air for a long time. It is a tough challenge to immobilize these powder photocatalysts and prevent their entrainment with the gas stream. Conventional methods for making stable films typically require expensive deposition equipment and only allow the deposition of very thin layers with limited photocatalytic performance. The present work presents an alternative approach, using the combination of commercially available photocatalytic nanopowders and a polymer or inorganic sol–gel-based matrix. Analysis of the photocatalytic degradation of ethanol was studied for these layers on metallic substrates, proving a difference in photocatalytic activity for different types of stable layers. The sol–gel-based TiO2 layers showed an improved photocatalytic activity of the nanomaterials compared with the polymer TiO2 layers. In addition, the used preparation methods require only a limited amount of photocatalyst, little equipment, and allow easy upscaling.  相似文献   

8.
For decades, sulfur has remained underdetected in molecular form within the dense interstellar medium (ISM), and somewhere a molecular sulfur sink exists where it may be hiding. With the discovery of hydrogen peroxide (HOOH) in the ISM in 2011, a natural starting point may be found in sulfur-bearing analogs that are chemically similar to HOOH: hydrogen thioperoxide (HOSH) and hydrogen persulfide (HSSH). The present theoretical study couples the accuracy in the anharmonic fundamental vibrational frequencies from the explicitly correlated coupled cluster theory with the accurate rotational constants provided by canonical high-level coupled cluster theory to produce rovibrational spectra for use in the potential observation of HOSH and HSSH. The ν6 mode for HSSH at 886.1 cm1 is within 0.2 cm1 of the gas-phase experiment, and the B0 rotational constant for HSSH of 6979.5 MHz is within 9.0 MHz of the experimental benchmarks, implying that the unknown spectral features (such as the first overtones and combination bands) provided herein are similarly accurate. Notably, a previous experimentally-attributed 2ν1 mode, at 7041.8 cm1, has been reassigned to the ν1+ν5 combination band based on the present work’s ν1+ν5 value at 7034.3 cm1. The most intense vibrational transitions for each molecule are the torsions, with HOSH having a more intense transition of 72 km/mol compared to HSSH’s intensity of 14 km/mol. Furthermore, HOSH has a larger net dipole moment of 1.60 D compared to HSSH’s 1.15 D. While HOSH may be the more likely candidate of the two for possible astronomical observation via vibrational spectroscopy due to the notable difference in their intensities, both HSSH and HOSH have large enough net dipole moments to be detectable by rotational spectroscopy to discover the role these molecules may have as possible molecular sulfur sinks in the dense ISM.  相似文献   

9.
Our long-term investigations have been devoted the characterization of intramolecular hydrogen bonds in cyclic compounds. Our previous work covers naphthazarin, the parent compound of two systems discussed in the current work: 2,3-dimethylnaphthazarin (1) and 2,3-dimethoxy-6-methylnaphthazarin (2). Intramolecular hydrogen bonds and substituent effects in these compounds were analyzed on the basis of Density Functional Theory (DFT), Møller–Plesset second-order perturbation theory (MP2), Coupled Clusters with Singles and Doubles (CCSD) and Car-Parrinello Molecular Dynamics (CPMD). The simulations were carried out in the gas and crystalline phases. The nuclear quantum effects were incorporated a posteriori using the snapshots taken from ab initio trajectories. Further, they were used to solve a vibrational Schrödinger equation. The proton reaction path was studied using B3LYP, ωB97XD and PBE functionals with a 6-311++G(2d,2p) basis set. Two energy minima (deep and shallow) were found, indicating that the proton transfer phenomena could occur in the electronic ground state. Next, the electronic structure and topology were examined in the molecular and proton transferred (PT) forms. The Atoms In Molecules (AIM) theory was employed for this purpose. It was found that the hydrogen bond is stronger in the proton transferred (PT) forms. In order to estimate the dimers’ stabilization and forces responsible for it, the Symmetry-Adapted Perturbation Theory (SAPT) was applied. The energy decomposition revealed that dispersion is the primary factor stabilizing the dimeric forms and crystal structure of both compounds. The CPMD results showed that the proton transfer phenomena occurred in both studied compounds, as well as in both phases. In the case of compound 2, the proton transfer events are more frequent in the solid state, indicating an influence of the environmental effects on the bridged proton dynamics. Finally, the vibrational signatures were computed for both compounds using the CPMD trajectories. The Fourier transformation of the autocorrelation function of atomic velocity was applied to obtain the power spectra. The IR spectra show very broad absorption regions between 700 cm1–1700 cm1 and 2300 cm1–3400 cm1 in the gas phase and 600 cm1–1800 cm1 and 2200 cm1–3400 cm1 in the solid state for compound 1. The absorption regions for compound 2 were found as follows: 700 cm1–1700 cm1 and 2300 cm1–3300 cm1 for the gas phase and one broad absorption region in the solid state between 700 cm1 and 3100 cm1. The obtained spectroscopic features confirmed a strong mobility of the bridged protons. The inclusion of nuclear quantum effects showed a stronger delocalization of the bridged protons.  相似文献   

10.
Liquid Crystal Elastomers (LCEs) combine the anisotropic ordering of liquid crystals with the elastic properties of elastomers, providing unique physical properties, such as stimuli responsiveness and a recently discovered molecular auxetic response. Here, we determine how the molecular relaxation dynamics in an acrylate LCE are affected by its phase using broadband dielectric relaxation spectroscopy, calorimetry and rheology. Our LCE is an excellent model system since it exhibits a molecular auxetic response in its nematic state, and chemically identical nematic or isotropic samples can be prepared by cross-linking. We find that the glass transition temperatures (Tg) and dynamic fragilities are similar in both phases, and the T-dependence of the α relaxation shows a crossover at the same T* for both phases. However, for T>T*, the behavior becomes Arrhenius for the nematic LCE, but only more Arrhenius-like for the isotropic sample. We provide evidence that the latter behavior is related to the existence of pre-transitional nematic fluctuations in the isotropic LCE, which are locked in by polymerization. The role of applied strain on the relaxation dynamics and mechanical response of the LCE is investigated; this is particularly important since the molecular auxetic response is linked to a mechanical Fréedericksz transition that is not fully understood. We demonstrate that the complex Young’s modulus and the α relaxation time remain relatively unchanged for small deformations, whereas for strains for which the auxetic response is achieved, significant increases are observed. We suggest that the observed molecular auxetic response is coupled to the strain-induced out-of-plane rotation of the mesogen units, in turn driven by the increasing constraints on polymer configurations, as reflected in increasing elastic moduli and α relaxation times; this is consistent with our recent results showing that the auxetic response coincides with the emergence of biaxial order.  相似文献   

11.
The Lennard–Jones (LJ) and Improved Lennard–Jones (ILJ) potential models have been deeply tested on the most accurate CCSD(T)/CBS electronic energies calculated for some weakly bound prototype systems. These results are important to plan the correct application of such models to systems at increasing complexity. CCSD(T)/CBS ground state electronic energies were determined for 21 diatomic systems composed by the combination of the noble gas atoms. These potentials were employed to calculate the rovibrational spectroscopic constants, and the results show that for 20 of the 21 pairs the ILJ predictions agree more effectively with the experimental data than those of the LJ model. The CCSD(T)/CBS energies were also used to determine the β parameter of the ILJ form, related to the softness/hardness of the interacting partners and controlling the shape of the potential well. This information supports the experimental finding that suggests the adoption of β9 for most of the systems involving noble gas atoms. The He-Ne and He-Ar molecules have a lifetime of less than 1ps in the 200–500 K temperature range, indicating that they are not considered stable under thermal conditions of gaseous bulks. Furthermore, the controversy concerning the presence of a “virtual” or a “real” vibrational state in the He2 molecule is discussed.  相似文献   

12.
Deuterium isotope effects on acid–base equilibrium have been investigated using a combined path integral and free-energy perturbation simulation method. To understand the origin of the linear free-energy relationship of ΔpKa=pKaD2OpKaH2O versus pKaH2O, we examined two theoretical models for computing the deuterium isotope effects. In Model 1, only the intrinsic isotope exchange effect of the acid itself in water was included by replacing the titratable protons with deuterons. Here, the dominant contribution is due to the difference in zero-point energy between the two isotopologues. In Model 2, the medium isotope effects are considered, in which the free energy change as a result of replacing H2O by D2O in solute–solvent hydrogen-bonding complexes is determined. Although the average ΔpKa change from Model 1 was found to be in reasonable agreement with the experimental average result, the pKaH2O dependence of the solvent isotope effects is absent. A linear free-energy relationship is obtained by including the medium effect in Model 2, and the main factor is due to solvent isotope effects in the anion–water complexes. The present study highlights the significant roles of both the intrinsic isotope exchange effect and the medium solvent isotope effect.  相似文献   

13.
Tetrazines with branched alkoxy substituents are liquids at ambient temperature that despite the high chromophore density retain the bright orange fluorescence that is characteristic of this exceptional fluorophore. Here, we study the photophysical properties of a series of alkoxy-tetrazines in solution and as neat liquids. We also correlate the size of the alkoxy substituents with the viscosity of the liquids. We show using time-resolved spectroscopy that intersystem crossing is an important decay pathway competing with fluorescence, and that its rate is higher for 3,6-dialkoxy derivatives than for 3-chloro-6-alkoxytetrazines, explaining the higher fluorescence quantum yields for the latter. Quantum chemical calculations suggest that the difference in rate is due to the activation energy required to distort the tetrazine core such that the nπ*S1 and the higher-lying ππ*T2 states cross, at which point the spin-orbit coupling exceeding 10 cm1 allows for efficient intersystem crossing to occur. Femtosecond time-resolved anisotropy studies in solution allow us to measure a positive relationship between the alkoxy chain lengths and their rotational correlation times, and studies in the neat liquids show a fast decay of the anisotropy consistent with fast exciton migration in the neat liquid films.  相似文献   

14.
An ascorbic acid (AA) sensor was constructed based on the fluorescence resonance energy transfer (FRET) between CdS quantum dots (CdS QDs) and polydopamine (PDA) to detect trace AA sensitively. FRET occurred due to the broad absorption spectrum of PDA completely overlapped with the narrow emission spectrum of CdS QDs. The fluorescence of CdS QDs was quenched and in the “off” state. When AA was present, the conversion of DA to PDA was hindered and the FRET disappeared, resulting in the fluorescence of CdS QDs in an “on” state. Importantly, the degree of fluorescence recovery of CdS QDs displayed a desirable linear correlation with the concentration of AA in the range of 5.0–100.0 μmol/L, the linear equation is y=0.0119cAA+0.3113, and the detection limit is 1.16 μmol/L (S/N = 3, n = 9). There was almost no interference with common amino acid, glucose and biological sulfhydryl small molecules to AA. Trace amount of AA in vitamin C tablets were determined and satisfactory results were obtained; the recoveries were observed to be 98.01–100.7%.  相似文献   

15.
The importance of the dynamic interplay between the opioid and the serotonin neuromodulatory systems in chronic pain is well recognized. In this study, we investigated whether these two signalling pathways can be integrated at the single-cell level via direct interactions between the mu-opioid (MOP) and the serotonin 1A (5-HT1A) receptors. Using fluorescence cross-correlation spectroscopy (FCCS), a quantitative method with single-molecule sensitivity, we characterized in live cells MOP and 5-HT1A interactions and the effects of prolonged (18 h) exposure to selected non-peptide opioids: morphine, codeine, oxycodone and fentanyl, on the extent of these interactions. The results indicate that in the plasma membrane, MOP and 5-HT1A receptors form heterodimers that are characterized with an apparent dissociation constant Kdapp = (440 ± 70) nM). Prolonged exposure to all non-peptide opioids tested facilitated MOP and 5-HT1A heterodimerization and stabilized the heterodimer complexes, albeit to a different extent: Kd, Fentanylapp = (80 ± 70) nM), Kd,Morphineapp = (200 ± 70) nM, Kd, Codeineapp = (100 ± 70) nM and Kd, Oxycodoneapp = (200 ± 70) nM. The non-peptide opioids differed also in the extent to which they affected the mitogen-activated protein kinases (MAPKs) p38 and the extracellular signal-regulated kinase (Erk1/2), with morphine, codeine and fentanyl activating both pathways, whereas oxycodone activated p38 but not ERK1/2. Acute stimulation with different non-peptide opioids differently affected the intracellular Ca2+ levels and signalling dynamics. Hypothetically, targeting MOP–5-HT1A heterodimer formation could become a new strategy to counteract opioid induced hyperalgesia and help to preserve the analgesic effects of opioids in chronic pain.  相似文献   

16.
We unravel the potentialities of resonance Raman spectroscopy to detect ibuprofen in diluted aqueous solutions. In particular, we exploit a fully polarizable quantum mechanics/molecular mechanics (QM/MM) methodology based on fluctuating charges coupled to molecular dynamics (MD) in order to take into account the dynamical aspects of the solvation phenomenon. Our findings, which are discussed in light of a natural bond orbital (NBO) analysis, reveal that a selective enhancement of the Raman signal due to the normal mode associated with the C–C stretching in the ring, νC=C, can be achieved by properly tuning the incident wavelength, thus facilitating the recognition of ibuprofen in water samples.  相似文献   

17.
We present a simulation study of supramolecular aggregates formed by three-arm azobenzene (Azo) stars with a benzene-1,3,5-tricarboxamide (BTA) core in water. Previous experimental works by other research groups demonstrate that such Azo stars assemble into needle-like structures with light-responsive properties. Disregarding the response to light, we intend to characterize the equilibrium state of this system on the molecular scale. In particular, we aim to develop a thorough understanding of the binding mechanism between the molecules and analyze the structural properties of columnar stacks of Azo stars. Our study employs fully atomistic molecular dynamics (MD) simulations to model pre-assembled aggregates with various sizes and arrangements in water. In our detailed approach, we decompose the binding energies of the aggregates into the contributions due to the different types of non-covalent interactions and the contributions of the functional groups in the Azo stars. Initially, we investigate the origin and strength of the non-covalent interactions within a stacked dimer. Based on these findings, three arrangements of longer columnar stacks are prepared and equilibrated. We confirm that the binding energies of the stacks are mainly composed of ππ interactions between the conjugated parts of the molecules and hydrogen bonds formed between the stacked BTA cores. Our study quantifies the strength of these interactions and shows that the ππ interactions, especially between the Azo moieties, dominate the binding energies. We clarify that hydrogen bonds, which are predominant in BTA stacks, have only secondary energetic contributions in stacks of Azo stars but remain necessary stabilizers. Both types of interactions, ππ stacking and H-bonds, are required to maintain the columnar arrangement of the aggregates.  相似文献   

18.
The metastable zone width (MSZW) of p-methoxybenzoic acid (PMBA) in an ethanol-water system was measured using the polythermal method. The nucleation order m obtained by the Nývlt’s model indicates the nucleation of PMBA following a progressive nucleation mechanism at low saturation temperature (m = 3.18–7.50) and an instantaneous nucleation mechanism at high saturation temperature (m = 1.46–2.55). Then, combined with the metastable zone experiment and the Sangwal model, we found that the MSZW and the interfacial energy reached the maximum when the mass fraction of ethanol was 0.8, which resulted in the smallest crystal product size. Meanwhile, the maximum rcrit and ΔGcrit obtained based on the modified Sangwal model indicating the PMBA needs to overcome a higher nucleation barrier in the ethanol mass fraction of 0.8. Finally, we proposed a preferential strategy for adjusting MSZW by correlating the interfacial energy with the change in ethanol mass fraction, saturation temperature, and cooling rate, respectively.  相似文献   

19.
In the context of computational drug design, we examine the effectiveness of the enhanced sampling techniques in state-of-the-art free energy calculations based on alchemical molecular dynamics simulations. In a paradigmatic molecule with competition between conformationally restrained E and Z isomers whose probability ratio is strongly affected by the coupling with the environment, we compare the so-called λ-hopping technique to the Hamiltonian replica exchange methods assessing their convergence behavior as a function of the enhanced sampling protocols (number of replicas, scaling factors, simulation times). We found that the pure λ-hopping, commonly used in solvation and binding free energy calculations via alchemical free energy perturbation techniques, is ineffective in enhancing the sampling of the isomeric states, exhibiting a pathological dependence on the initial conditions. Correct sampling can be restored in λ-hopping simulation by the addition of a “hot-zone” scaling factor to the λ-stratification (FEP+ approach), provided that the additive hot-zone scaling factors are tuned and optimized using preliminary ordinary replica-exchange simulation of the end-states.  相似文献   

20.
Water borane (BH3OH2) and borinic acid (BH2OH) have been proposed as intermediates along the pathway of hydrogen generation from simple reactants: water and borane. However, the vibrational spectra for neither water borane nor borinic acid has been investigaged experimentally due to the difficulty of isolating them in the gas phase, making accurate quantum chemical predictions for such properties the most viable means of their determination. This work presents theoretical predictions of the full rotational and fundamental vibrational spectra of these two potentially application-rich molecules using quartic force fields at the CCSD(T)-F12b/cc-pCVTZ-F12 level with additional corrections included for the effects of scalar relativity. This computational scheme is further benchmarked against the available gas-phase experimental data for the related borane and HBO molecules. The differences are found to be within 3 cm1 for the fundamental vibrational frequencies and as close as 15 MHz in the B0 and C0 principal rotational constants. Both BH2OH and BH3OH2 have multiple vibrational modes with intensities greater than 100 km mol1, namely ν2 and ν4 in BH2OH, and ν1, ν3, ν4, ν9, and ν13 in BH3OH2. Finally, BH3OH2 has a large dipole moment of 4.24 D, which should enable it to be observable by rotational spectroscopy, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号