首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paclitaxel is one of the chemotheraputic drugs widely used for the treatment of nonsmall cell lung cancer (NSCLC) patients. Here, we tested the ability of α-tocopheryl succinate (TOS), another promising anticancer agent, to enhance the paclitaxel response in NSCLC cells. We found that sub-apoptotic doses of TOS greatly enhanced paclitaxel-induced growth suppression and apoptosis in the human H460 NSCLC cell lines. Our data revealed that this was accounted for primarily by an augmented cleavage of poly(ADP-ribose) polymerase (PARP) and enhanced activation of caspase-8. Pretreatment with z-VAD-FMK (a pan-caspase inhibitor) or z-IETD-FMK (a caspase-8 inhibitor) blocked TOS/paclitaxel cotreatment-induced PARP cleavage and apoptosis, suggesting that TOS potentiates the paclitaxel-induced apoptosis through enforced caspase 8 activation in H460 cells. Furthermore, the growth suppression effect of TOS/paclitaxel combination on human H460, A549 and H358 NSCLC cell lines were synergistic. Our observations indicate that combination of paclitaxel and TOS may offer a novel therapeutic strategy for improving paclitaxel drug efficacy in NSCLC patient therapy as well as for potentially lowering the toxic side effects of paclitaxel through reduced drug dosage.  相似文献   

2.
Two functionally and structurally different proteins, p16(INK4a) and p14(ARF), encoded by the gene INK4a/ARF located at 9p21 are cyclin-dependent kinase (cdk) inhibitors and important cell cycle regulators. More and more evidences have been accumulated to show that the exogenous p16(INK4a) or p14(ARF) can inhibit the cell growth and/or induce the apoptosis. But it is still unclear if they can play positive role when combine with the conventional chemotherapy in cancer treatment. Here we show that cationic liposome-mediated gene transfection of INK4a/ARF into lung cancer cell line A549, in which the INK4a/ARF locus was lost, suppressed the growth and induced apoptosis. When treated with five different chemotherapy drugs with different mechanism after the transfection, A549 got an increased chemosensitivity for adriamycin and cisplatin and an unchanged result for topotecan, taxol or vinorelbine. The results indicated that cell cycle redistribution and increased apoptosis index after transfection might be the main explanation for the enhanced chemosensitivity. The combination of gene therapy with conventional chemotherapy is not always better than single chemotherapy. This trial will be of benefit to the treatment of lung cancer when combine the conventional chemotherapy and gene therapy in the future.  相似文献   

3.
Lung cancer continues to be the world’s leading cause of cancer death and the treatment of non-small cell lung cancer (NSCLC) has attracted much attention. The tubers of Bletilla striata are regarded as “an excellent medicine for lung diseases” and as the first choice to treat several lung diseases. In this study, seventeen phenanthrene derivatives, including two new compounds (1 and 2), were isolated from the tubers of B. striata. Most compounds showed cytotoxicity against A549 cells. An EdU proliferation assay, a cell cycle assay, a wound healing assay, a transwell migration assay, a flow cytometry assay, and a western blot assay were performed to further investigate the effect of compound 1 on A549 cells. The results showed that compound 1 inhibited cell proliferation and migration and promoted cell apoptosis in A549 cells. The mechanisms might correlate with the regulation of the Akt, MEK/ERK, and Bcl-2/Bax signaling pathways. These results suggested that the phenanthrenes of B. striata might be important and effective substances in the treatment of NSCLC.  相似文献   

4.
Lung cancer is the leading cause of cancer deaths worldwide and most cancer patients receiving conventional chemotherapy suffer from severe side effects due to the non-selective effects of chemotherapeutic drugs on normal cells. Targeted nanomaterials can obtain excellent accumulation at the tumor site through their active or passive targeting mechanisms, thereby reducing the toxicity of the drugs in various ways. In this study, hyaluronic acid (HA) which could specifically bind to CD44 on the surface of tumor cells, was used to modify amine-caged platinum nanoclusters (Pt NCs-NH2) to obtain targeting HA-Pt NCs-NH2. Based on the differential expression of CD44 on the surface of three lung cells (non-small cell lung cancer cell H1299, small cell lung cancer cell H446, and embryonic lung fibroblast HFL1), HA-Pt NCs-NH2 can differentially enter the three cells and achieve their targeting of non-small cell lung cancer cell (NSCLC) cells. Pt NCs significantly inhibited the proliferation, migration and invasion of NSCLC cells and induced their apoptosis in comparison of classical cisplatin and carboplatin, showing a bright future in early diagnosis and treatment of NSCLC.  相似文献   

5.
Crocus sativus L., commonly known as saffron, is the raw material for one of the most expensive spice in the world, and it has been used in folk medicine for centuries. We investigated the potential of the ethanolic extract of saffron to induce cytotoxic and apoptosis effects in carcinomic human alveolar basal epithelial cells (A549), a commonly used cell culture system for in vitro studies on lung cancer. The cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum treated with different concentrations of the ethanolic extract of saffron for two consecutive days. Cell viability was quantitated by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Apoptotic cells were determined using annexin V–fluorescein isothiocyanate by flow cytometry. Saffron could decrease the cell viability in the malignant cells as a concentration- and time-dependent manner. The IC50 values against the A549 cell lines were determined as 1,200 and 650 μg/ml after 24 and 48 h, respectively. Saffron-induced apoptosis of the A549 cells in a concentration-dependent manner, as determined by flow cytometry histogram of treated cells that induced apoptotic cell death, is involved in the toxicity of saffron. It might be concluded that saffron could cause cell death in the A549 cells, in which apoptosis plays an important role. Saffron could also be considered as a promising chemotherapeutic agent in lung cancer treatment in future.  相似文献   

6.
7.
Sesamol has moved into biomedical research in recent years. However, its interactions with blood proteins and cancer cells have not been fully explored. Therefore, we aimed to investigate the interaction of sesamol with human serum albumin (HSA), A549 human nonsmall cell lung cancer (NSCLC) cell line, and Raw 264.7 macrophage. The interaction of HSA with sesamol was explored via application of fluorescence and circular dichroism (CD) spectroscopy studies as well as molecular docking analysis. Then, the cytotoxic effects of sesamol on A549 lung cancer cells and Raw 264.7 macrophages were evaluated by qPCR analysis. It was found that sesamol spontaneously (ΔG?=-45.89 kJ/mol) binds with HSA having a high affinity (log Kb = 8.05, n = 1.70, T = 298 K) and form a static complex trough contribution of hydrogen bonds and van der Waals interactions (ΔH?=-409.43 kJ/mol, TΔS?=-363.54 kJ/mol) which was supported by molecular docking study. Furthermore, by using CD and synchronous fluorescence spectroscopy analyses it was found that sesamol induced some minor secondary and tertiary structural changes, respectively in HSA structure. Cellular assays displayed that sesamol triggered selective cytotoxicity against A549 lung cancer cells through regulation of intrinsic apoptosis pathway mediated by mitigation of mitochondrial membrane potential, elevation of ROS generation, downregulation of Bax, and up regulation of caspase-9, ?3. In conclusion, it was found that sesamol could show high affinity with HSA and mediate intrinsic apoptosis pathway through ROS generation in the A549 lung cancer cell lines. These data indicate that the biochemical and anticancer mechanisms of sesamol can be further investigated in future studies to integrate it in the biomedical platforms.  相似文献   

8.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.  相似文献   

9.
A series of 30 non-covalent imidazo[1,2-a]quinoxaline-based inhibitors of epidermal growth factor receptor (EGFR) were designed and synthesized. EGFR inhibitory assessment (against wild type) data of compounds revealed 6b, 7h, 7j, 9a and 9c as potent EGFRWT inhibitors with IC50 values of 211.22, 222.21, 193.18, 223.32 and 221.53 nM, respectively, which were comparable to erlotinib (221.03 nM), a positive control. Furthermore, compounds exhibited excellent antiproliferative activity when tested against cancer cell lines harboring EGFRWT; A549, a non-small cell lung cancer (NSCLC), HCT-116 (colon), MDA-MB-231 (breast) and gefitinib-resistant NSCLC cell line H1975 harboring EGFRL858R/T790M. In particular, compound 6b demonstrated significant inhibitory potential against gefitinib-resistant H1975 cells (IC50 = 3.65 μM) as compared to gefitinib (IC50 > 20 μM). Moreover, molecular docking disclosed the binding mode of the 6b to the domain of EGFR (wild type and mutant type), indicating the basis of inhibition. Furthermore, its effects on redox modulation, mitochondrial membrane potential, cell cycle analysis and cell death mode in A549 lung cancer cells were also reported.  相似文献   

10.
Xanthatin, a natural sesquiterpene lactone, has significant antitumor activity against a variety of cancer cells, yet little is known about its anticancer mechanism. In this study, we demonstrated that xanthatin had obvious dose-/time-dependent cytotoxicity against the human non-small-cell lung cancer (NSCLC) cell line A549. Flow cytometry analysis showed xanthatin induced cell cycle arrest at G2/M phase. Xanthatin also had pro-apoptotic effects on A549 cells as evidenced by Hoechst 33258 staining and annexin V-FITC staining. Mechanistic data revealed that xanthatin downregulated Chk1, Chk2, and phosphorylation of CDC2, which contributed to the cell cycle arrest. Xathatin also increased total p53 protein levels, decreased Bcl-2/Bax ratio and expression of the downstream factors procaspase-9 and procaspase-3, which triggered the intrinsic apoptosis pathway. Furthermore, xanthatin blocked phosphorylation of NF-κB (p65) and IκBa, which might also contribute to its pro-apoptotic effects on A549 cells. Xanthatin also inhibited TNFa induced NF-κB (p65) translocation. We conclude that xanthatin displays significant antitumor effects through cell cycle arrest and apoptosis induction in A549 cells. These effects were associated with intrinsic apoptosis pathway and disrupted NF-κB signaling. These results suggested that xanthatin may have therapeutic potential against NSCLC.  相似文献   

11.
《高分子科学》2019,37(12):1224-1233
Drug-resistance and drastic side effects are two major issues of traditional chemotherapy which may result in trail failure even death. Nanoparticle-mediated multidrug combination treatment has been proven to be a feasible strategy to overcome these challenges. In the present study, amphipathic block polymer of methoxyl poly(ethylene glycol)-poly(aspartyl(dibutylethylenediamine)-co-phenylalanine)(m PEG-P(Asp(DBA)-co-Phe)) was synthesized and self-assembled into p H-responsive polymeric vesicle. The vesicle was utilized to co-deliver cancer-associated epidermal growth factor(EGFR) inhibitor of afatinib and DNA-damaging chemotherapeutic doxorubicin hydrochloride(DOX) for enhanced non-small-cell lung cancer(NSCLC) therapy. As evaluated in vitro, the p H-responsive design of nanovesicle resulted in a rapid release of encapsulated drugs into tumor cells and caused enhanced cell apoptosis. In addition, in vivo therapeutic studies were conducted and the results evidenced that the co-delevery of DOX and afatinib using p H-sensitive nanovector was a promising strategy for NSCLC treatment.  相似文献   

12.
Phycocyanin, derived from marine algae, is known to have noteworthy antineoplastic properties. However, the underlying mechanism involved in phycocyanin-mediated anti-growth function on non-small cell lung cancer (NSCLC) cells is still ambiguous. Here, we investigated the mechanism of action of phycocyanin on H1299, A549, and LTEP-a2 cells. According to the results obtained, insulin receptor substrate 1 (IRS-1) expression was reduced by phycocyanin. Cell phenotype tests showed that siRNA knockdown of IRS-1 expression significantly inhibited the growth, migration, colony formation, but promoted the apoptosis of NSCLC cells. Meanwhile, phycocyanin and IRS-1 siRNA treatment both reduced the PI3K-AKT activities in NSCLC cells. Moreover, overexpression of IRS-1 accelerated the proliferation, colony formation, and migration rate of H1299, A549, and LTEP-a2 cells, which was contradicting to the knockdown results. Overall, this study uncovered a regulatory mechanism by which phycocyanin inhibited the growth of NSCLC cells via IRS-1/AKT pathway, laying the foundation for the potential target treatment of NSCLC.  相似文献   

13.
Redox adaptation is an important concept that explains the mechanisms by which cancer cells survive under persistent endogenous oxidative stress and become resistant to certain anticancer agents. To investigate this concept, we determined the expression levels of peroxiredoxins (Prxs), antioxidant enzymes in drug-resistant non-small cell lung carcinoma cells. Prx II was remarkably increased only in A549/GR (gefitinib-resistant) cells compared with A549 cells, consistent with methylation/demethylation. Prx II was highly methylated in the A549 cells but was demethylated in the A549/GR cells. The elevated expression of Prx II resulted in the downregulation of reactive oxygen species (ROS) and cell death and upregulation of cell cycle progression in the A549/GR cells. When Prx II mRNA in the A549/GR cells was knocked down, the levels of ROS and apoptosis were significantly recovered to the levels of the controls. In addition, signaling molecules involved in apoptosis were increased in the A549/GR-shPrx II cells. There was no difference in the expression of MAPK/ERK between the A549/GR cells and A549/GR-shPrx II cells, but the phosphorylation of JNK was increased in the A549/GR cells and was markedly decreased in the A549/GR-shPrx II cells. Colony number and tumor growth were significantly decreased in the A549/GR-shPrx II cells compared with the A549/GR cells. Our findings suggest that Prx II has an important role in cancer cell survival via the modulation of signaling molecules involved in apoptosis and the phosphorylation of JNK by the downregulation of ROS levels in A549/GR cells.  相似文献   

14.
TNF-related apoptosis-inducing ligand (TRAIL/Apo- 2L), a newly identified member of the TNF family promotes apoptosis by binding to the transmembrane receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL known to activate NF-kappaB in number of tumor cells including A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells exerts relatively selective cytotoxic affects to the human tumor cell lines without much effect on the normal cells. We set out to identify an agent that would sensitize lung cancer cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. We found that triptolide, an oxygenated diterpene extracted and purified from the Chinese herb Tripterygium wilfordii sensitized A549 and NCI-H1299 cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. Pretreatment with MG132 which is a well-known NF-kappaB inhibitor by blocking degradation of IkappaBalpha also greatly sensitized lung cancer cells to TRAIL-induced apoptosis. Triptolide did not block DNA binding of NF-kappaB activated by TRAIL as in the case of TNF-alpha. It has been already proven that triptolide blocks transactivation of p65 which plays a key role in NF-kappaB activation. These observations suggest that triptolide may be a potentially useful drug to enhance TRAIL-induced tumor killing in lung cancer.  相似文献   

15.
Non-small cell lung cancer (NSCLC), an aggressive subtype of pulmonary carcinomas with high mortality, accounts for 85% of all lung cancers. Drug resistance and high recurrence rates impede the chemotherapeutic effect, making it urgent to develop new anti-NSCLC agents. Recently, we have demonstrated that para-toluenesulfonamide is a potential anti-tumor agent in human castration-resistant prostate cancer (CRPC) through inhibition of Akt/mTOR/p70S6 kinase pathway and lipid raft disruption. In the current study, we further addressed the critical role of cholesterol-enriched membrane microdomain and autophagic activation to para-toluenesulfonamide action in killing NSCLC. Similar in CRPC, para-toluenesulfonamide inhibited the Akt/mTOR/p70S6K pathway in NSCLC cell lines NCI-H460 and A549, leading to G1 arrest of the cell cycle and apoptosis. Para-toluenesulfonamide significantly decreased the cholesterol levels of plasma membrane. External cholesterol supplement rescued para-toluenesulfonamide-mediated effects. Para-toluenesulfonamide induced a profound increase of LC3-II protein expression and a significant decrease of p62 expression. Double staining of lysosomes and cellular cholesterol showed para-toluenesulfonamide-induced lysosomal transportation of cholesterol, which was validated using flow cytometric analysis of lysosome staining. Moreover, autophagy inhibitors could blunt para-toluenesulfonamide-induced effect, indicating autophagy induction. In conclusion, the data suggest that para-toluenesulfonamide is an effective anticancer agent against NSCLC through G1 checkpoint arrest and apoptotic cell death. The disturbance of membrane cholesterol levels and autophagic activation may play a crucial role to para-toluenesulfonamide action.  相似文献   

16.
Beta adrenoblockers are a large class of drugs used to treat cardiovascular diseases, migraines, glaucoma and hyperthyroidism. Over the last couple of decades, the anticancer effects of these compounds have been extensively studied. However, the exact mechanism is still not known, and more detailed studies are required. The aim of our study was to evaluate the anticancer activity of beta adrenoblockers in non-small cell lung cancer cell lines A549 and H1299. In order to find the relationship with their selectivity to beta adrenoreceptors, selective (atenolol, betaxolol, esmolol, metoprolol) and non-selective (pindolol, propranolol and timolol) beta blockers were tested. The effect on cell viability was evaluated by MTT assay, and the activity on cell ability to form colonies was tested by clonogenic assay. The type of cell death was evaluated by cell double staining with Hoechst 33342 and Propidium iodide. The most active adrenoblockers against both tested cancer cell lines were propranolol and betaxolol. They completely inhibited lung cancer cell colony formation at 90% of the EC50 (half-maximal effective concentration) value. Most tested compounds induced cell death through apoptosis and necrosis. There was no correlation established between beta adrenoblocker anticancer activity and their selectivity to beta adrenoreceptors.  相似文献   

17.
The present research was to investigate the effects of skimmianine (SK) in four non-small cell lung cancer (NSCLC) cells. We found that SK can significantly inhibit the growth of NSCLC cells and markedly induce apoptosis in NSCLC cells. The effects of growth inhibition and apoptosis induction were in a concentration–response relationship and caspase-dependent manner.  相似文献   

18.
19.
Ten new water soluble titanocene dichloride derivatives have been synthesized and characterized and their cytotoxicities against the human lung cancer cell line A549 have been assessed. The potencies of the compounds vary greatly, but dicationic 3-picolylium and 4-picolylium compounds exhibit IC50 values that are unusually low for this class of compounds. In view of their potency against A549 cells, three of the new complexes were tested further on additional human cell lines including the small cell lung cancer cell line H69, the widely used cervical carcinoma cell line HeLa, the ovarian carcinoma cell line A2780 and its cisplatin resistant derivative A2780/CP. All three compounds exhibited potencies in all cell lines comparable to or better than those observed with the A549 cells, while one complex is actually more potent than cisplatin for HeLa cells.  相似文献   

20.
MicroRNAs (miRNAs), a class of small non-coding RNAs, mediate gene expression by either cleaving target mRNAs or inhibiting their translation. They have key roles in the tumorigenesis of several cancers, including non-small cell lung cancer (NSCLC). The aim of this study was to investigate the clinical significance of miR-638 in the evaluation of NSCLC patient prognosis in response to chemotherapy. First, we detected miR-638 expression levels in vitro in the culture supernatants of the NSCLC cell line SPC-A1 treated with cisplatin, as well as the apoptosis rates of SPC-A1. Second, serum miR-638 expression levels were detected in vivo by using nude mice xenograft models bearing SPC-A1 with and without cisplatin treatment. In the clinic, the serum miR-638 levels of 200 cases of NSCLC patients before and after chemotherapy were determined by quantitative real-time PCR, and the associations of clinicopathological features with miR-638 expression patterns after chemotherapy were analyzed. Our data helped in demonstrating that cisplatin induced apoptosis of the SPC-A1 cells in a dose- and time-dependent manner accompanied by increased miR-638 expression levels in the culture supernatants. In vivo data further revealed that cisplatin induced miR-638 upregulation in the serum derived from mice xenograft models, and in NSCLC patient sera, miR-638 expression patterns after chemotherapy significantly correlated with lymph node metastasis. Moreover, survival analyses revealed that patients who had increased miR-638 levels after chemotherapy showed significantly longer survival time than those who had decreased miR-638 levels. Our findings suggest that serum miR-638 levels are associated with the survival of NSCLC patients and may be considered a potential independent predictor for NSCLC prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号